1. Solving

$$
\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=\left|\begin{array}{cc}
2-\lambda & 3 \\
-1 & -2-\lambda
\end{array}\right|=\lambda^{2}-1=(\lambda-1)(\lambda+1)=0
$$

we obtain eigenvalues $\lambda_{1}=-1$ and $\lambda_{2}=1$. Corresponding eigenvectors are

$$
\mathbf{K}_{1}=\binom{-1}{1} \quad \text { and } \quad \mathbf{K}_{2}=\binom{-3}{1}
$$

Thus

$$
\mathbf{X}_{c}=c_{1}\binom{-1}{1} e^{-t}+c_{2}\binom{-3}{1} e^{t}
$$

Substituting

$$
\mathbf{X}_{p}=\binom{a_{1}}{b_{1}}
$$

into the system yields

$$
\begin{gathered}
2 a_{1}+3 b_{1}=7 \\
-a_{1}-2 b_{1}=-5,
\end{gathered}
$$

from which we obtain $a_{1}=-1$ and $b_{1}=3$. Then

$$
\mathbf{X}(t)=c_{1}\binom{-1}{1} e^{-t}+c_{2}\binom{-3}{1} e^{t}+\binom{-1}{3} .
$$

3. Solving

$$
\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=\left|\begin{array}{cc}
1-\lambda & 3 \\
3 & 1-\lambda
\end{array}\right|=\lambda^{2}-2 \lambda-8=(\lambda-4)(\lambda+2)=0
$$

we obtain eigenvalues $\lambda_{1}=-2$ and $\lambda_{2}=4$. Corresponding eigenvectors are

$$
\mathbf{K}_{1}=\binom{1}{-1} \quad \text { and } \quad \mathbf{K}_{2}=\binom{1}{1} .
$$

Thus

$$
\mathbf{X}_{c}=c_{1}\binom{1}{-1} e^{-2 t}+c_{2}\binom{1}{1} e^{4 t}
$$

Substituting

$$
\mathbf{X}_{p}=\binom{a_{3}}{b_{3}} t^{2}+\binom{a_{2}}{b_{2}} t+\binom{a_{1}}{b_{1}}
$$

into the system yields

$$
\begin{array}{rrrr}
a_{3}+3 b_{3}=2 & a_{2}+3 b_{2}=2 a_{3} & a_{1}+3 b_{1}=a_{2} \\
3 a_{3}+b_{3}=0 & 3 a_{2}+b_{2}+1=2 b_{3} & 3 a_{1}+b_{1}+5=b_{2}
\end{array}
$$

from which we obtain $a_{3}=-1 / 4, b_{3}=3 / 4, a_{2}=1 / 4, b_{2}=-1 / 4, a_{1}=-2$, and $b_{1}=3 / 4$. Then

$$
\mathbf{X}(t)=c_{1}\binom{1}{-1} e^{-2 t}+c_{2}\binom{1}{1} e^{4 t}+\binom{-1 / 4}{3 / 4} t^{2}+\binom{1 / 4}{-1 / 4} t+\binom{-2}{3 / 4} .
$$

5. Solving

$$
\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=\left|\begin{array}{cc}
4-\lambda & 1 / 3 \\
9 & 6-\lambda
\end{array}\right|=\lambda^{2}-10 \lambda+21=(\lambda-3)(\lambda-7)=0
$$

we obtain the eigenvalues $\lambda_{1}=3$ and $\lambda_{2}=7$. Corresponding eigenvectors are

$$
\mathbf{K}_{1}=\binom{1}{-3} \quad \text { and } \quad \mathbf{K}_{2}=\binom{1}{9} .
$$

Thus

$$
\mathbf{X}_{c}=c_{1}\binom{1}{-3} e^{3 t}+c_{2}\binom{1}{9} e^{7 t}
$$

Substituting

$$
\mathbf{X}_{p}=\binom{a_{1}}{b_{1}} e^{t}
$$

into the system yields

$$
\begin{aligned}
3 a_{1}+\frac{1}{3} b_{1} & =3 \\
9 a_{1}+5 b_{1} & =-10
\end{aligned}
$$

from which we obtain $a_{1}=55 / 36$ and $b_{1}=-19 / 4$. Then

$$
\mathbf{X}(t)=c_{1}\binom{1}{-3} e^{3 t}+c_{2}\binom{1}{9} e^{7 t}+\binom{55 / 36}{-19 / 4} e^{t}
$$

