In Problems 33-46 the form of the answer will vary according to the choice of eigenvector. For example, in Problem 33, if \mathbf{K}_{1} is chosen to be $\binom{1}{2-i}$ the solution has the form

$$
\mathbf{X}=c_{1}\binom{\cos t}{2 \cos t+\sin t} e^{4 t}+c_{2}\binom{\sin t}{2 \sin t-\cos t} e^{4 t}
$$

33. We have $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=\lambda^{2}-8 \lambda+17=0$. For $\lambda_{1}=4+i$ we obtain

$$
\mathbf{K}_{1}=\binom{2+i}{5}
$$

so that

$$
\mathbf{X}_{1}=\binom{2+i}{5} e^{(4+i) t}=\binom{2 \cos t-\sin t}{5 \cos t} e^{4 t}+i\binom{\cos t+2 \sin t}{5 \sin t} e^{4 t}
$$

Then

$$
\mathbf{X}=c_{1}\binom{2 \cos t-\sin t}{5 \cos t} e^{4 t}+c_{2}\binom{\cos t+2 \sin t}{5 \sin t} e^{4 t}
$$

In Problems 33-46 the form of the answer will vary according to the choice of eigenvector. For example, in Problem 33, if \mathbf{K}_{1} is chosen to be $\binom{1}{2-i}$ the solution has the form

$$
\mathbf{X}=c_{1}\binom{\cos t}{2 \cos t+\sin t} e^{4 t}+c_{2}\binom{\sin t}{2 \sin t-\cos t} e^{4 t}
$$

35. We have $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=\lambda^{2}-8 \lambda+17=0$. For $\lambda_{1}=4+i$ we obtain

$$
\mathbf{K}_{1}=\binom{-1-i}{2}
$$

so that

$$
\mathbf{X}_{1}=\binom{-1-i}{2} e^{(4+i) t}=\binom{\sin t-\cos t}{2 \cos t} e^{4 t}+i\binom{-\sin t-\cos t}{2 \sin t} e^{4 t}
$$

Then

$$
\mathbf{X}=c_{1}\binom{\sin t-\cos t}{2 \cos t} e^{4 t}+c_{2}\binom{-\sin t-\cos t}{2 \sin t} e^{4 t}
$$

In Problems 33-46 the form of the answer will vary according to the choice of eigenvector. For example, in Problem 33, if \mathbf{K}_{1} is chosen to be $\binom{1}{2-i}$ the solution has the form

$$
\mathbf{X}=c_{1}\binom{\cos t}{2 \cos t+\sin t} e^{4 t}+c_{2}\binom{\sin t}{2 \sin t-\cos t} e^{4 t}
$$

39. We have $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=-\lambda\left(\lambda^{2}+1\right)=0$. For $\lambda_{1}=0$ we obtain

$$
\mathbf{K}_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) .
$$

For $\lambda_{2}=i$ we obtain

$$
\mathbf{K}_{2}=\left(\begin{array}{r}
-i \\
i \\
1
\end{array}\right)
$$

so that

$$
\mathbf{X}_{2}=\left(\begin{array}{r}
-i \\
i \\
1
\end{array}\right) e^{i t}=\left(\begin{array}{r}
\sin t \\
-\sin t \\
\cos t
\end{array}\right)+i\left(\begin{array}{r}
-\cos t \\
\cos t \\
\sin t
\end{array}\right) .
$$

Then

$$
\mathbf{X}=c_{1}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+c_{2}\left(\begin{array}{r}
\sin t \\
-\sin t \\
\cos t
\end{array}\right)+c_{3}\left(\begin{array}{c}
-\cos t \\
\cos t \\
\sin t
\end{array}\right) .
$$

