1. Let $\mathbf{X}=\binom{x}{y}$. Then $\mathbf{X}^{\prime}=\left(\begin{array}{rr}3 & -5 \\ 4 & 8\end{array}\right) \mathbf{X}$.
2. Let $\mathbf{X}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$. Then $\mathbf{X}^{\prime}=\left(\begin{array}{rrr}-3 & 4 & -9 \\ 6 & -1 & 0 \\ 10 & 4 & 3\end{array}\right) \mathbf{X}$.
3. $\frac{d x}{d t}=x-y+2 z+e^{-t}-3 t ; \quad \frac{d y}{d t}=3 x-4 y+z+2 e^{-t}+t ; \quad \frac{d z}{d t}=-2 x+5 y+6 z+2 e^{-t}-t$
4. Since

$$
\mathbf{X}^{\prime}=\binom{-5}{-10} e^{-5 t} \quad \text { and } \quad\left(\begin{array}{cc}
3 & -4 \\
4 & -7
\end{array}\right) \mathbf{X}=\binom{-5}{-10} e^{-5 t}
$$

we see that

$$
\mathbf{X}^{\prime}=\left(\begin{array}{ll}
3 & -4 \\
4 & -7
\end{array}\right) \mathbf{X}
$$

17. Yes, since $W\left(\mathbf{X}_{1}, \mathbf{X}_{2}\right)=-2 e^{-8 t} \neq 0$ the set $\mathbf{X}_{1}, \mathbf{X}_{2}$ is linearly independent on $-\infty<t<\infty$.
18. Since

$$
\mathbf{X}_{p}^{\prime}=\binom{2}{-1} \quad \text { and } \quad\left(\begin{array}{ll}
1 & 4 \\
3 & 2
\end{array}\right) \mathbf{X}_{p}+\binom{2}{-4} t+\binom{-7}{-18}=\binom{2}{-1}
$$

we see that

$$
\mathbf{X}_{p}^{\prime}=\left(\begin{array}{ll}
1 & 4 \\
3 & 2
\end{array}\right) \mathbf{X}_{p}+\binom{2}{-4} t+\binom{-7}{-18}
$$

