1. The Laplace transform of the differential equation yields

$$
\mathscr{L}\{y\}=\frac{1}{s-3} e^{-2 s}
$$

so that

$$
y=e^{3(t-2)} \mathscr{U}(t-2) .
$$

3. The Laplace transform of the differential equation yields

$$
\mathscr{L}\{y\}=\frac{1}{s^{2}+1}\left(1+e^{-2 \pi s}\right)
$$

so that

$$
y=\sin t+\sin t \mathscr{U}(t-2 \pi) .
$$

7. The Laplace transform of the differential equation yields

$$
\mathscr{L}\{y\}=\frac{1}{s^{2}+2 s}\left(1+e^{-s}\right)=\left[\frac{1}{2} \frac{1}{s}-\frac{1}{2} \frac{1}{s+2}\right]\left(1+e^{-s}\right)
$$

so that

$$
y=\frac{1}{2}-\frac{1}{2} e^{-2 t}+\left[\frac{1}{2}-\frac{1}{2} e^{-2(t-1)}\right] \mathscr{U}(t-1) .
$$

11. The Laplace transform of the differential equation yields

$$
\begin{aligned}
\mathscr{L}\{y\} & =\frac{4+s}{s^{2}+4 s+13}+\frac{e^{-\pi s}+e^{-3 \pi s}}{s^{2}+4 s+13} \\
& =\frac{2}{3} \frac{3}{(s+2)^{2}+3^{2}}+\frac{s+2}{(s+2)^{2}+3^{2}}+\frac{1}{3} \frac{3}{(s+2)^{2}+3^{2}}\left(e^{-\pi s}+e^{-3 \pi s}\right)
\end{aligned}
$$

so that

$$
\begin{aligned}
y=\frac{2}{3} & e^{-2 t} \sin 3 t+e^{-2 t} \cos 3 t+\frac{1}{3} e^{-2(t-\pi)} \sin 3(t-\pi) \mathscr{U}(t-\pi) \\
& +\frac{1}{3} e^{-2(t-3 \pi)} \sin 3(t-3 \pi) \mathscr{U}(t-3 \pi) .
\end{aligned}
$$

