1. The auxiliary equation is $m^{2}-m-2=(m+1)(m-2)=0$ so that $y=c_{1} x^{-1}+c_{2} x^{2}$.
2. The auxiliary equation is $m^{2}=0$ so that $y=c_{1}+c_{2} \ln x$.
3. The auxiliary equation is $m^{2}+4=0$ so that $y=c_{1} \cos (2 \ln x)+c_{2} \sin (2 \ln x)$.
4. The auxiliary equation is $m^{2}-4 m-2=0$ so that $y=c_{1} x^{2-\sqrt{6}}+c_{2} x^{2+\sqrt{6}}$.
5. The auxiliary equation is $25 m^{2}+1=0$ so that $y=c_{1} \cos \left(\frac{1}{5} \ln x\right)+c_{2} \sin \left(\frac{1}{5} \ln x\right)$.
6. The auxiliary equation is $m^{2}-5 m=m(m-5)=0$ so that $y_{c}=c_{1}+c_{2} x^{5}$ and

$$
W\left(1, x^{5}\right)=\left|\begin{array}{cc}
1 & x^{5} \\
0 & 5 x^{4}
\end{array}\right|=5 x^{4}
$$

Identifying $f(x)=x^{3}$ we obtain $u_{1}^{\prime}=-\frac{1}{5} x^{4}$ and $u_{2}^{\prime}=1 / 5 x$. Then $u_{1}=-\frac{1}{25} x^{5}, u_{2}=\frac{1}{5} \ln x$, and

$$
y=c_{1}+c_{2} x^{5}-\frac{1}{25} x^{5}+\frac{1}{5} x^{5} \ln x=c_{1}+c_{3} x^{5}+\frac{1}{5} x^{5} \ln x .
$$

31. Substituting $x=e^{t}$ into the differential equation we obtain

$$
\frac{d^{2} y}{d t^{2}}+8 \frac{d y}{d t}-20 y=0
$$

The auxiliary equation is $m^{2}+8 m-20=(m+10)(m-2)=0$ so that

$$
y=c_{1} e^{-10 t}+c_{2} e^{2 t}=c_{1} x^{-10}+c_{2} x^{2}
$$

33. Substituting $x=e^{t}$ into the differential equation we obtain

$$
\frac{d^{2} y}{d t^{2}}+9 \frac{d y}{d t}+8 y=e^{2 t}
$$

The auxiliary equation is $m^{2}+9 m+8=(m+1)(m+8)=0$ so that $y_{c}=c_{1} e^{-t}+c_{2} e^{-8 t}$. Using undetermined coefficients we try $y_{p}=A e^{2 t}$. This leads to $30 A e^{2 t}=e^{2 t}$, so that $A=1 / 30$ and

$$
y=c_{1} e^{-t}+c_{2} e^{-8 t}+\frac{1}{30} e^{2 t}=c_{1} x^{-1}+c_{2} x^{-8}+\frac{1}{30} x^{2} .
$$

