1. $\left(9 D^{2}-4\right) y=(3 D-2)(3 D+2) y=\sin x$
2. $\left(D^{2}-4 D-12\right) y=(D-6)(D+2) y=x-6$
3. $D^{4} y=D^{4}\left(10 x^{3}-2 x\right)=D^{3}\left(30 x^{2}-2\right)=D^{2}(60 x)=D(60)=0$
4. D^{4} because of x^{3}
5. $e^{6 x}, e^{-3 x / 2}$
6. Applying D to the differential equation we obtain

$$
D\left(D^{2}-9\right) y=0
$$

Then

$$
y=\underbrace{c_{1} e^{3 x}+c_{2} e^{-3 x}}_{y_{c}}+c_{3}
$$

and $y_{p}=A$. Substituting y_{p} into the differential equation yields $-9 A=54$ or $A=-6$. The general solution is

$$
y=c_{1} e^{3 x}+c_{2} e^{-3 x}-6
$$

37. Applying D to the differential equation we obtain

$$
D\left(D^{2}+D\right) y=D^{2}(D+1) y=0
$$

Then

$$
y=\underbrace{c_{1}+c_{2} e^{-x}}_{y_{c}}+c_{3} x
$$

and $y_{p}=A x$. Substituting y_{p} into the differential equation yields $A=3$. The general solution is

$$
y=c_{1}+c_{2} e^{-3 x}+3 x
$$

39. Applying D^{2} to the differential equation we obtain

$$
D^{2}\left(D^{2}+4 D+4\right) y=D^{2}(D+2)^{2} y=0
$$

Then

$$
y=\underbrace{c_{1} e^{-2 x}+c_{2} x e^{-2 x}}_{y_{c}}+c_{3}+c_{4} x
$$

and $y_{p}=A x+B$. Substituting y_{p} into the differential equation yields $4 A x+(4 A+4 B)=2 x+6$. Equating coefficients gives

$$
\begin{array}{r}
4 A=2 \\
4 A+4 B=6 .
\end{array}
$$

Then $A=1 / 2, B=1$, and the general solution is

$$
y=c_{1} e^{-2 x}+c_{2} x e^{-2 x}+\frac{1}{2} x+1
$$

41. Applying D^{3} to the differential equation we obtain

$$
D^{3}\left(D^{3}+D^{2}\right) y=D^{5}(D+1) y=0
$$

Then

$$
y=\underbrace{c_{1}+c_{2} x+c_{3} e^{-x}}_{y_{c}}+c_{4} x^{4}+c_{5} x^{3}+c_{6} x^{2}
$$

and $y_{p}=A x^{4}+B x^{3}+C x^{2}$. Substituting y_{p} into the differential equation yields

$$
12 A x^{2}+(24 A+6 B) x+(6 B+2 C)=8 x^{2}
$$

Equating coefficients gives

$$
\begin{aligned}
12 A & =8 \\
24 A+6 B & =0 \\
6 B+2 C & =0 .
\end{aligned}
$$

Then $A=2 / 3, B=-8 / 3, C=8$, and the general solution is

$$
y=c_{1}+c_{2} x+c_{3} e^{-x}+\frac{2}{3} x^{4}-\frac{8}{3} x^{3}+8 x^{2} .
$$

