1. From $m^{2}+3 m+2=0$ we find $m_{1}=-1$ and $m_{2}=-2$. Then $y_{c}=c_{1} e^{-x}+c_{2} e^{-2 x}$ and we assume $y_{p}=A$. Substituting into the differential equation we obtain $2 A=6$. Then $A=3, y_{p}=3$ and

$$
y=c_{1} e^{-x}+c_{2} e^{-2 x}+3
$$

3. From $m^{2}-10 m+25=0$ we find $m_{1}=m_{2}=5$. Then $y_{c}=c_{1} e^{5 x}+c_{2} x e^{5 x}$ and we assume $y_{p}=A x+B$. Substituting into the differential equation we obtain $25 A=30$ and $-10 A+25 B=3$. Then $A=\frac{6}{5}, B=\frac{3}{5}, y_{p}=\frac{6}{5} x+\frac{3}{5}$, and

$$
y=c_{1} e^{5 x}+c_{2} x e^{5 x}+\frac{6}{5} x+\frac{3}{5} .
$$

5. From $\frac{1}{4} m^{2}+m+1=0$ we find $m_{1}=m_{2}=-2$. Then $y_{c}=c_{1} e^{-2 x}+c_{2} x e^{-2 x}$ and we assume $y_{p}=A x^{2}+B x+C$. Substituting into the differential equation we obtain $A=1,2 A+B=-2$, and $\frac{1}{2} A+B+C=0$. Then $A=1, B=-4, C=\frac{7}{2}, y_{p}=x^{2}-4 x+\frac{7}{2}$, and

$$
y=c_{1} e^{-2 x}+c_{2} x e^{-2 x}+x^{2}-4 x+\frac{7}{2} .
$$

7. From $m^{2}+3=0$ we find $m_{1}=\sqrt{3} i$ and $m_{2}=-\sqrt{3} i$. Then $y_{c}=c_{1} \cos \sqrt{3} x+c_{2} \sin \sqrt{3} x$ and we assume $y_{p}=\left(A x^{2}+B x+C\right) e^{3 x}$. Substituting into the differential equation we obtain $2 A+6 B+12 C=0,12 A+12 B=0$, and $12 A=-48$. Then $A=-4, B=4, C=-\frac{4}{3}$, $y_{p}=\left(-4 x^{2}+4 x-\frac{4}{3}\right) e^{3 x}$ and

$$
y=c_{1} \cos \sqrt{3} x+c_{2} \sin \sqrt{3} x+\left(-4 x^{2}+4 x-\frac{4}{3}\right) e^{3 x}
$$

9. From $m^{2}-m=0$ we find $m_{1}=1$ and $m_{2}=0$. Then $y_{c}=c_{1} e^{x}+c_{2}$ and we assume $y_{p}=A x$. Substituting into the differential equation we obtain $-A=-3$. Then $A=3, y_{p}=3 x$ and $y=c_{1} e^{x}+c_{2}+3 x$.
10. From $m^{2}+4=0$ we find $m_{1}=2 i$ and $m_{2}=-2 i$. Then $y_{c}=c_{1} \cos 2 x+c_{2} \sin 2 x$ and we assume $y_{p}=A x \cos 2 x+B x \sin 2 x$. Substituting into the differential equation we obtain $4 B=0$ and $-4 A=3$. Then $A=-\frac{3}{4}, B=0, y_{p}=-\frac{3}{4} x \cos 2 x$, and

$$
y=c_{1} \cos 2 x+c_{2} \sin 2 x-\frac{3}{4} x \cos 2 x .
$$

29. We have $y_{c}=c_{1} e^{-x / 5}+c_{2}$ and we assume $y_{p}=A x^{2}+B x$. Substituting into the differential equation we find $A=-3$ and $B=30$. Thus $y=c_{1} e^{-x / 5}+c_{2}-3 x^{2}+30 x$. From the initial conditions we obtain $c_{1}=200$ and $c_{2}=-200$, so

$$
y=200 e^{-x / 5}-200-3 x^{2}+30 x
$$

31. We have $y_{c}=e^{-2 x}\left(c_{1} \cos x+c_{2} \sin x\right)$ and we assume $y_{p}=A e^{-4 x}$. Substituting into the differential equation we find $A=7$. Thus $y=e^{-2 x}\left(c_{1} \cos x+c_{2} \sin x\right)+7 e^{-4 x}$. From the initial conditions we obtain $c_{1}=-10$ and $c_{2}=9$, so

$$
y=e^{-2 x}(-10 \cos x+9 \sin x)+7 e^{-4 x} .
$$

45. (a) $f(x)=e^{x} \sin x$. We see that $y_{p} \rightarrow \infty$ as $x \rightarrow \infty$ and $y_{p} \rightarrow 0$ as $x \rightarrow-\infty$.
(b) $f(x)=e^{-x}$. We see that $y_{p} \rightarrow \infty$ as $x \rightarrow \infty$ and $y_{p} \rightarrow \infty$ as $x \rightarrow-\infty$.
(c) $f(x)=\sin 2 x$. We see that y_{p} is sinusoidal.
(d) $f(x)=1$. We see that y_{p} is constant and simply translates y_{c} vertically.
