29. From $m^{2}+16=0$ we obtain $m= \pm 4 i$ so that $y=c_{1} \cos 4 x+c_{2} \sin 4 x$. If $y(0)=2$ and $y^{\prime}(0)=-2$ then $c_{1}=2, c_{2}=-1 / 2$, and $y=2 \cos 4 x-\frac{1}{2} \sin 4 x$.
30. The auxiliary equation should have two positive roots, so that the solution has the form $y=c_{1} e^{k_{1} x}+c_{2} e^{k_{2} x}$. Thus, the differential equation is (f).
31. The auxiliary equation should have one positive and one negative root, so that the solution has the form $y=c_{1} e^{k_{1} x}+c_{2} e^{-k_{2} x}$. Thus, the differential equation is (a).
32. The auxiliary equation should have a pair of complex roots $\alpha \pm \beta i$ where $\alpha<0$, so that the solution has the form $e^{\alpha x}\left(c_{1} \cos \beta x+c_{2} \sin \beta x\right)$. Thus, the differential equation is (e).
33. The auxiliary equation should have a repeated negative root, so that the solution has the form $y=c_{1} e^{-x}+c_{2} x e^{-x}$. Thus, the differential equation is (c).
34. The differential equation should have the form $y^{\prime \prime}+k^{2} y=0$ where $k=1$ so that the period of the solution is 2π. Thus, the differential equation is (d).
35. The differential equation should have the form $y^{\prime \prime}+k^{2} y=0$ where $k=2$ so that the period of the solution is π. Thus, the differential equation is (b).

Page 1

