1. Letting $y=u x$ we have

$$
\begin{aligned}
(x-u x) d x+x(u d x+x d u) & =0 \\
d x+x d u & =0 \\
\frac{d x}{x}+d u & =0 \\
\ln |x|+u & =c \\
x \ln |x|+y & =c x .
\end{aligned}
$$

3. Letting $x=v y$ we have

$$
\begin{aligned}
v y(v d y+y d v)+(y-2 v y) d y & =0 \\
v y^{2} d v+y\left(v^{2}-2 v+1\right) d y & =0 \\
\frac{v d v}{(v-1)^{2}}+\frac{d y}{y} & =0 \\
\ln |v-1|-\frac{1}{v-1}+\ln |y| & =c \\
\ln \left|\frac{x}{y}-1\right|-\frac{1}{x / y-1}+\ln y & =c \\
(x-y) \ln |x-y|-y & =c(x-y) .
\end{aligned}
$$

5. Letting $y=u x$ we have

$$
\begin{aligned}
\left(u^{2} x^{2}+u x^{2}\right) d x-x^{2}(u d x+x d u) & =0 \\
u^{2} d x-x d u & =0 \\
\frac{d x}{x}-\frac{d u}{u^{2}} & =0 \\
\ln |x|+\frac{1}{u} & =c \\
\ln |x|+\frac{x}{y} & =c \\
y \ln |x|+x & =c y .
\end{aligned}
$$

11. Letting $y=u x$ we have

$$
\begin{aligned}
\left(x^{3}-u^{3} x^{3}\right) d x+u^{2} x^{3}(u d x+x d u) & =0 \\
d x+u^{2} x d u & =0 \\
\frac{d x}{x}+u^{2} d u & =0 \\
\ln |x|+\frac{1}{3} u^{3} & =c \\
3 x^{3} \ln |x|+y^{3} & =c_{1} x^{3} .
\end{aligned}
$$

Using $y(1)=2$ we find $c_{1}=8$. The solution of the initial-value problem is $3 x^{3} \ln |x|+y^{3}=8 x^{3}$.
17. From $y^{\prime}+y=x y^{4}$ and $w=y^{-3}$ we obtain $\frac{d w}{d x}-3 w=-3 x$. An integrating factor is $e^{-3 x}$ so that $e^{-3 x} w=x e^{-3 x}+\frac{1}{3} e^{-3 x}+c$ or $y^{-3}=x+\frac{1}{3}+c e^{3 x}$.
21. From $y^{\prime}-\frac{2}{x} y=\frac{3}{x^{2}} y^{4}$ and $w=y^{-3}$ we obtain $\frac{d w}{d x}+\frac{6}{x} w=-\frac{9}{x^{2}}$. An integrating factor is x^{6} so that $x^{6} w=-\frac{9}{5} x^{5}+c$ or $y^{-3}=-\frac{9}{5} x^{-1}+c x^{-6}$. If $y(1)=\frac{1}{2}$ then $c=\frac{49}{5}$ and $y^{-3}=-\frac{9}{5} x^{-1}+\frac{49}{5} x^{-6}$.

