Homework 9

For these exercises, let M be a connected 1-manifold, $U, V \subseteq M$ connected open sets and $\phi: U \to \mathbb{R}$, $\psi: V \to \mathbb{R}$ local charts, i.e., embeddings.

The boundary of a subset A of a topological space is $\partial A = \overline{A} - \text{Int}(A)$.

For hints and more details, see: http://www.jstor.org/stable/2322421.

Gale, David. The Teaching of Mathematics: The Classification of 1-Manifolds: A Take-Home Exam. Amer. Math. Monthly 94 (1987), no. 2, 170–175.

1. Suppose that both $U \cap V$ and U - V are nonempty and let (x_n) be a sequence in $U \cap V$ that converges to a point $x \in U - V$. Show that the set $\{\psi(x_n)\}$ does not have a limit point in $\psi(V)$.

2. Suppose that $U \cap V$, U - V and V - U are nonempty and let W be a connected component of $U \cap V$. Show that $\partial \phi(W) \cap \partial \phi(U) \neq \emptyset$ and $\partial \psi(W) \cap \partial \psi(V) \neq \emptyset$. Conclude that $U \cap V$ has at most two connected components.

3. Show that if $U \cap V$ has two components, then M is homeomorphic to S^1 .

4. Suppose that $U \cap V$, U - V and V - U are nonempty and $U \cap V$ is connected. Show that there is an embedding $\rho: U \cup V \to \mathbb{R}$.

5. Prove that M is homeomorphic to either \mathbb{R} or S^1 .