Homework 8

1. Show that a continuous bijection between compact Hausdorff spaces is a homeomorphism.

2. Let $\{A_n, f_n\}$ and $\{B_n, g_n\}$ be inverse limit systems and suppose that for each *n* there is a continuous function $\varphi_n \colon A_n \to B_n$ such that $g_n \varphi_n = \varphi_{n-1} f_n$. In other words, the following diagram commutes:

$$\begin{array}{c|c} A_n \xrightarrow{f_n} A_{n-1} \\ \varphi_n & & & & \downarrow \varphi_{n-1} \\ B_n \xrightarrow{g_n} B_{n-1} \end{array}$$

Show that there is an induced continuous function $\varphi \colon \lim_{\leftarrow} A_n \to \lim_{\leftarrow} B_n$ defined by $\varphi((a_n)) = (\varphi_n(a_n))$

3. Let $\{X_n, f_n\}$ be a inverse limit system where each X_n is a compact Hausdorff space. Prove that the inverse limit space $\lim_{\leftarrow} X_n$ is a compact Hausdorff space.

4. Let \mathcal{C} be the Cantor set. Prove that \mathcal{C} is homeomorphic to $\mathcal{C} \times \mathcal{C}$.

5. Let \mathcal{C} be the Cantor set. Show that every continuous function $f: \mathcal{C} \to \mathbb{R}^n$ can be extended to a continuous function $F: [0,1] \to \mathbb{R}^n$.