Homework 7

1. Let $M = \prod_{N} [0, 1]$. Show that

$$d((x_n), (x'_n)) = \sup_{n \in \mathbb{N}} \left| \frac{x_n - x'_n}{n} \right|$$

is a metric on M that induces the same topology as the product topology.

2. Suppose that S is Hausdorff, $X \subseteq S$ and there exists a continuous function $r: S \to X$ such that r(x) = x for all $x \in X$, i.e., X is a *retract* of S. Prove that X is closed in S.

3. Suppose (M, d) is a metric space and that there exists $\epsilon > 0$ such that $\overline{B}_d(x, \epsilon)$ is compact for all $x \in M$. Prove that M is complete.

4. Suppose that S is a complete metric space, $A \subseteq S$ for which there exists a collection of open sets $\{U_n\}_{n\in\mathbb{N}}$ such that $A = \bigcap U_n$, i.e., A is a G_{δ} set. Show that A is a Baire space in the subspace $n \in \mathbb{N}$

topology.

5. Show that the set of irrational numbers $J = \mathbb{R} - \mathbb{Q}$ is a G_{δ} set of \mathbb{R} . That is, find a collection of open sets $\{U_n\}_{n\in\mathbb{N}}$ of \mathbb{R} for which $J = \bigcap U_n$. Conclude that J is a Baire space. $n \in \mathbb{N}$