Homework 6

1. Prove or disprove: The product of Hausdorff spaces is Hausdorff.

2. Show that S is Hausdorff if and only if the diagonal $\Delta = \{(x, x) \mid x \in S\} \subseteq S \times S$ is closed.

3. Show that a locally compact Hausdorff space is regular.

4. Show that if S is normal and $C, D \subseteq S$ are disjoint closed subsets, then there exists open sets $U, V \subseteq S$ for which $C \subseteq U, D \subseteq V$ and $\overline{U} \cap \overline{V} = \emptyset$.

5. Suppose that S is normal and $A \subseteq S$ is closed. Prove that there exists a continuous function $f: S \to [0, 1]$ with f(x) = 0 for $x \in A$ and f(x) > 0 for $x \notin A$, if and only if there exists a collection of open sets $\{U_n\}_{n \in \mathbb{N}}$ such that $A = \bigcap_{n \in \mathbb{N}} U_n$.