Homework 5

1. For all $n \in \mathbb{N}$, let $S_n = \{0, 1\}$ endowed with the discrete topology and $S = \prod_{n \in \mathbb{N}} S_n$. Let

 $X = \{ (x_n)_{n \in \mathbb{N}} \mid x_n = 0 \text{ for all but finitely many } n \}.$

Prove that $\overline{X} = S$. As X is countable, this shows that S is separable.

2. Suppose that (M, δ) is a metric space and S is compact. Let M^S be the set of continuous functions from S to M and d the metric on M^S given by

$$d(f,g) = \sup_{x \in S} \delta(f(x), g(x)).$$

Show that the induced topology on M^S is the same as the compact-open topology on M^S .

3. Let $I = [0, 1] \subset \mathbb{R}$. Show that I^I , the set of continuous functions from I to I, is not compact with the metric $d(f,g) = \sup_{x \in I} |f(x) - g(x)|$.

4. Find a space that is a T_0 -space but not a T_1 -space.

5. Find an example of a T_1 -space that contains a compact subset that is not closed. Such a space is not a T_2 -space (Hausdorff).