MATH 5703	Topology I	Fall 2014
Section: 001	MWF $10:45 - 11:35$	Prof. Matthew Clay
	MAIN 322	

Homework 3

1. Show that if $A \subseteq X$ and $B \subseteq Y$, then $\overline{A \times B} = \overline{A} \times \overline{B}$.

2. Let X and Y be topological spaces, and assume $A \subseteq X$ and $B \subseteq Y$. Then the subspace topology on $A \times B$ inherited from $X \times Y$ is the same as the product topology on $A \times B$, where A has the subspace topology inherited from X and B has the subspace topology inherited from Y.

3. Is
$$X = \{(x, y) \mid x, y \ge 0 \text{ and } xy = 0\} \cup \left\{ \left(x, \frac{1}{x}\right) \mid x > 0 \right\}$$
 connected? Prove or disprove.

4. Let S be an infinite set and τ the *finite complement topology*, that is, $X \in \tau$ if $|S - X| < \infty$ or $X = \emptyset$. Show that S is connected.

5. Prove that if X and Y are connected, then so is $X \times Y$.