Homework 10

1. Let $U \subseteq \mathbb{R}^n$ be a connected open set. Show that for all $x, y \in U$ there is an embedding $p: [0,1] \to U$ such that p(0) = x, p(1) = y and p([0,1]) = |K| for some Euclidean complex K. Such a path is called a *polyhedral arc*.

2. Let σ^n be an *n*-simplex in \mathbb{R}^n . Show that σ^n is homeomorphic to the unit ball $\overline{B(0,1)} = \{\mathbf{x} \in \mathbb{R}^n \mid ||\mathbf{x}|| \leq 1\}$ where $||\mathbf{x}||$ is the standard Euclidean norm on \mathbb{R}^n .

For the remainder, let D^2 be the unit disk in \mathbb{R}^2 and let S^1 be the unit circle in \mathbb{R}^2 .

3. Show that any homeomorphism $f: S^1 \to S^1$ can be extended to a homeomorphism $F: D^2 \to D^2$.

4. Suppose p, q, r, s are four distinct points in S^1 in the stated cyclic order and that $A, B \subset D^2$ are disjoint compact subsets such that $A \cap S^1 = \{p\}$ and $B \cap S^1 = \{r\}$. Show that q and s lie in the same component of $D^2 - (A \cup B)$.

5. Show that there is no retraction $r: D^2 \to S^1$. That is, show there is no continuous function $r: D^2 \to S^1$ such that r(x) = x for all $x \in S^1$.