Chapter 4 - 1

- 2. For $\langle a \rangle$, generators are a and a^5 ; for $\langle b \rangle$, generators are b, b^3 , b^5 , and b^7 ; for $\langle c \rangle$, generators are c, c^3 , c^7 , c^9 , c^{11} , c^{13} , c^{17} , c^{19} .
- 9. Six subgroups; generators are the divisors of 20. Six subgroups; generators are a^k , where k is a divisor of 20.
- 11. By definition, $a^{-1} \in \langle a \rangle$. So, $\langle a^{-1} \rangle \subseteq \langle a \rangle$. By definition, $a = (a^{-1})^{-1} \in \langle a^{-1} \rangle$. So, $\langle a \rangle \subseteq \langle a^{-1} \rangle$.
- 14. 49. First note that the group is not infinite since an infinite cyclic group has infinitely many subgroups. Let |G| = n. Then 7 and n/7 are both divisors of n. If $n/7 \neq 7$, then G has at least 4 divisors. So, n/7 = 7. When 7 is replaced by p, $|G| = p^2$.
- 43. Let $|a|=m,\ b=n$ and $d=\gcd(m,n).$ Then $\operatorname{lcm}(m,n)=mn/d,\ |a^d|=m/d,$ and |b|=n. Then by Exercise 41, $|a^db|=\operatorname{lcm}(m,n).$