2. Let $R=R_{120},\,R^2=R_{240},\,F$ a reflection across a vertical axis, F'=RF and $F''=R^2F$ | | R_0 | R | R^2 | \boldsymbol{F} | F' | F'' | |------------|------------------|------------|--------------------------------|------------------|------------|-------| | R_0 | R_0 | R | R^2 | F | F' | F'' | | R | R | R^2 | R_0 | F' | F'' | F | | R^2 | R^2 | R_0 | R | F'' | ${\pmb F}$ | F' | | ${\pmb F}$ | \boldsymbol{F} | F'' | F' | R_0 | R^2 | R | | F' | F' | ${\pmb F}$ | F'' | R | R_0 | R^2 | | F'' | F'' | F' | R^2 R_0 R F' F'' F | R^2 | R | R_0 | 16. Let the distance from a point on one H to the corresponding point on an adjacent H be one unit. Then translations of any number of units to the right or left are symmetries; reflection across the horizontal axis through the middle of the H's is a symmetry; reflection across any vertical axis midway between two H's or bisecting any H is a symmetry. All other symmetries are compositions of finitely many of those already described. The group is non-Abelian.