2. Let $R=R_{120},\,R^2=R_{240},\,F$ a reflection across a vertical axis, F'=RF and $F''=R^2F$

	R_0	R	R^2	\boldsymbol{F}	F'	F''
R_0	R_0	R	R^2	F	F'	F''
R	R	R^2	R_0	F'	F''	F
R^2	R^2	R_0	R	F''	${\pmb F}$	F'
${\pmb F}$	\boldsymbol{F}	F''	F'	R_0	R^2	R
F'	F'	${\pmb F}$	F''	R	R_0	R^2
F''	F''	F'	R^2 R_0 R F' F'' F	R^2	R	R_0

16. Let the distance from a point on one H to the corresponding point on an adjacent H be one unit. Then translations of any number of units to the right or left are symmetries; reflection across the horizontal axis through the middle of the H's is a symmetry; reflection across any vertical axis midway between two H's or bisecting any H is a symmetry. All other symmetries are compositions of finitely many of those already described. The group is non-Abelian.