2. Let $R=R_{120}, R^{2}=R_{240}, F$ a reflection across a vertical axis, $F^{\prime}=R F$ and $F^{\prime \prime}=R^{2} F$

	R_{0}	R	R^{2}	F	F^{\prime}	$F^{\prime \prime}$
R_{0}	R_{0}	R	R^{2}	F	F^{\prime}	$F^{\prime \prime}$
R	R	R^{2}	R_{0}	F^{\prime}	$F^{\prime \prime}$	F
R^{2}	R^{2}	R_{0}	R	$F^{\prime \prime}$	F	F^{\prime}
F	F	$F^{\prime \prime}$	F^{\prime}	R_{0}	R^{2}	R
F^{\prime}	F^{\prime}	F	$F^{\prime \prime}$	R	R_{0}	R^{2}
$F^{\prime \prime}$	$F^{\prime \prime}$	F^{\prime}	F	R^{2}	R	R_{0}

16. Let the distance from a point on one H to the corresponding point on an adjacent H be one unit. Then translations of any number of units to the right or left are symmetries; reflection across the horizontal axis through the middle of the H 's is a symmetry; reflection across any vertical axis midway between two H 's or bisecting any H is a symmetry. All other symmetries are compositions of finitely many of those already described. The group is non-Abelian.
