3. $12,2,2,10,1,0,4,5$.
4. $s=-3, t=2 ; s=8, t=-5$
5. Write $a s+b t=d$. Then $a^{\prime} s+b^{\prime} t=(a / d) s+(b / d) t=1$.
6. If $\operatorname{gcd}(a, b c)=1$, then there is no prime that divides both a and $b c$. By Euclid's Lemma and unique factorization, this means that there is no prime that divides both a and b or both a and c. Conversely, if no prime divides both a and b or both a and c, then by Euclid's Lemma, no prime divides both a and $b c$.
7. Suppose that S is a set that contains a and whenever $n \geq a$ belongs to S, then $n+1 \in S$. We must prove that S contains all integers greater than or equal to a. Let T be the set of all integers greater than a that are not in S and suppose that T is not empty. Let b be the smallest integer in T (if T has no negative integers, b exists because of the Well Ordering Principle; if T has negative integers, it can have only a finite number of them so that there is a smallest one). Then $b-1 \in S$, and therefore $b=(b-1)+1 \in S$. This contradicts our assumption that b is not in S.
