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Abstract. We show that the Hausdorff distance between any forward and any backward
surgery paths in the sphere graph is at most 2. From this it follows that the Hausdorff
distance between any two surgery paths with the same initial sphere system and same
target sphere system is at most 4. Our proof relies on understanding how surgeries affect
the Guirardel core associated to sphere systems. We show that applying a surgery is
equivalent to performing a Rips move on the Guirardel core.

1. Introduction

In this paper, we study the surgery paths in the sphere graph. Let M be the connected
sum of n copies of S1 × S2 (we reserve the notation M for the universal cover of M
which is used more frequently in the body of the paper). The vertices of the sphere
graph are essential sphere systems in M and edges encode containment (see Section 2
for precise definitions). We denote the sphere graph by S and the associated metric
with dS . It is known that the sphere graph (S, dS) is hyperbolic in the sense of Gromov
[HM13, HH15]. The relationship between the optimal hyperbolicity constant and the rank
of the fundamental group of M (which is isomorphic to Fn, the free group of rank n) is
unknown.

Given a pair of (filling) sphere systems S and Σ, there is a natural family of paths, called
surgery paths, connecting them. They are obtained by replacing larger and larger portions
of spheres in S with pieces of spheres in Σ. This process is not unique. Also, families
of paths that start from S with target Σ are different from those starting from Σ with
target S. It follows from [HH15] that surgery paths are quasi-geodesics. Together with the
hyperbolicity of the sphere graph, this implies that different surgery paths starting with
S and with target Σ have bounded Hausdorff distance in the sphere graph. The bound
depends on the optimal hyperbolicity constant, which as stated above, does not have a
good qualitative estimate.

However, in this paper we show that, in any rank, any two surgery paths are within
Hausdorff distance at most 4 of each other. This follows by comparing a surgery path that
starts from S with target Σ to a surgery path starting from Σ with target S.

Theorem 1.1. Let S and Σ be two filling sphere systems and let

S = S1, S2, . . . , Sm, dS(Sm,Σ) ≤ 1

be a surgery sequence starting from S towards Σ and

Σ = Σ1,Σ2, . . . ,Σµ, dS(Σµ, S) ≤ 1

be a surgery sequence in the opposite direction. Then, for every Si there is a Σj so that
dS(Si,Σj) ≤ 2.
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Using this, we get the bound of 4 between paths with the same initial sphere system
and same target sphere system.

Theorem 1.2. Let S and Σ be two filling sphere systems and let

S = S1, S2, . . . , Sm, dS(Sm,Σ) ≤ 1

and

S = S′1, S
′
2, . . . , S

′
n, dS(S′n,Σ) ≤ 1

be two surgery sequences starting from S towards Σ. Then, for every Si there is a S′j so

that dS(Si, S
′
j) ≤ 4.

Proof. Fix two filling sphere systems S and Σ and surgery paths as in the statement of
the theorem. Let

Σ = Σ1,Σ2, . . . ,Σµ dS(Σµ, S) ≤ 1

be a surgery sequence starting at Σ towards S. Given Si, by Theorem 1.1, there is
a Σk such that dS(Si,Σk) ≤ 2. Applying Theorem 1.1 again, there is a S′j such that

dS(Σk, Sj) ≤ 2. Thus dS(Si, S
′
j) ≤ 4 as desired. �

The sphere graph is a direct analogue of the graph of arcs on a surface with boundary.
In fact, there is an embedding of the arc graph into the sphere graph. The arc graph
is known to be uniformly hyperbolic [Aou13, Bow14, CRS14, HPW15, PS15]. Since the
solution of many algorithmic problems for mapping class groups or hyperbolic 3–manifold
that fibers over a circle rely on the action of mapping class group on various curve and arc
complexes, the uniform hyperbolicity clarifies which constant depend on the genus and
which ones are genus independent. The uniform hyperbolicity of the sphere graph (or one
of the other combinatorial complexes associated to Out(Fn)) is a central open question in
the study of the group Out(Fn), the group of outer automorphisms of the free group. Note
that Theorem 1.2 is not sufficient to prove that the sphere graph is uniformly hyperbolic.

Summary of other results. The Guirardel core [Gui05] is a square complex associated
to two trees equipped with isometric actions by a group, in our case Fn. This is an analogue
of a quadratic differential in the surface case; the area of the core is the intersection
number between the two associated sphere systems. Following [BBC10], in Section 3, we
describe how to compute the core using the change of marking map between the two trees.
Lemma 3.7 gives a simple condition when a product of two edges is in the core, which will
be used in future work to study the core. Also, in Section 4 we define the core for two
sphere systems, Core(S,Σ) directly using the intersection pattern of the spheres and show
this this object is isomorphic to the Guirardel core for the associated tree (Theorem 4.9).
Much of what is contained in these two sections is known to the experts, however, we
include a self-contained exposition of the material since it is not written in an easily
accessible way in the literature.

Applying a surgery to a sphere system amounts to applying a splitting move to the dual
tree (see Example 5.6), however, not all splittings towards a given tree come from surgeries.
In general, applying a splitting move could change the associated core in unpredictable
ways potentially increasing the volume of the core. We will show that (Theorem 5.5)
applying a surgery is equivalent to performing a Rips move on the Guirardel core. That
is, there is a subset of all splitting paths between two trees that is natural from the point
of view of the Guirardel core and it matches exactly with the set of splitting sequences
that are associated to surgery paths.
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Outline of the proof. Our proof of Theorem 1.1 analyses Guirardel core Core(Si,Σj).
Generally, this does not have to be related to Core(S,Σ). However, we show that, for
small values of i and j, the spheres Si and Σj are still in normal form and Core(Si,Σj)
can be obtained from Core(S,Σ) via a sequence of vertical and horizontal Rips moves
(Proposition 5.8). For every i, there is the smallest j where this breaks down which is
exactly the moment the surgery path from Σ to S passes near Si. The proof of Theorem 1.1
is completed in Section 6: for every Si, apply enough surgery on Σ until Core(Si,Σj) has
a free edge, which implies dS(Si,Σj) ≤ 2.

Acknowledgements. We would like to thank Mladen Bestvina for helpful conversa-
tions, particularly, for giving us the idea to examine how the core changes along splitting
sequence.

2. Sphere systems and free splittings

Let M be the connected sum of n copies of S1 × S2 and fix an identification of π1(M)
with Fn. There is a well-known correspondence between spheres in M and graph of group
decompositions of Fn with trivial edge groups. We explain this correspondence now.

Definition 2.1. A sphere system S ⊂ M is a finite union of disjoint essential (does not
bound a 3–ball) embedded 2–spheres in M . We specifically allow for the possibility that
a sphere system contains parallel, i.e., isotopic, spheres. A sphere system is filling if each
of the complementary regions M − S are simply-connected.

We define a preorder on the set of sphere systems by S � Σ if every sphere in S is
isotopic to a sphere in Σ. This induces an equivalence relation: S ∼ Σ if S � Σ and
Σ � S. The set of equivalence classes of sphere systems in M is denoted by S; the subset
of equivalence classes of filling sphere systems is denoted by Sfill. When there can be no
confusion, we denote the equivalence class of S again by S.

The preorder induces a partial order on S that we continue to denote by �. The sphere
graph is the simplicial graph with vertex set S and edges corresponding to domination
S � Σ. For S,Σ ∈ S, we denote by dS(S,Σ) the distance between S and Σ in the sphere
graph. This the fewest number of edges in an edge path between the two vertices.

We denote the universal cover of M by M and the lift of the sphere system S to M by S;
we will refer to S as a sphere system in M . To simplify notation, we use S and respectively
Sfill to denote (equivalence classes of) sphere systems, respectively filling sphere systems,
in M . Let Map(M) = Homeo(M)

/
homotopy. The natural map:

Map(M)→ Out(Fn)

is surjective and has finite kernel generated by Dehn twists about embedded 2–spheres
in M [Lau74]. Such homomorphisms act trivially on spheres systems and hence there is
a left action of Out(Fn) by automorphisms on the sphere graph. Specifically, realize the
given outer automorphism by a homeomorphism of M and apply this homeomorphism to
the members of a given equivalence class of sphere systems.

Definition 2.2. A free splitting G is a simplicial tree equipped with a cocompact action of
Fn by automorphisms (without inversions) such that the stabilizer of every edge is trivial.
We specifically allow for the possibility that a free splitting contains vertices of valence
two. A free splitting is filling if the stabilizer of every vertex is trivial.

We define a preorder on the set of free splittings by G � Γ if there is an Fn–equivariant
cellular map Γ→ G with connected point pre-images. This induces an equivalence relation:
G ∼ Γ if G � Γ and Γ � G. The set of equivalence classes of free splittings is denoted by
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X ; the subset of equivalence classes of filling free splittings is denoted Xfill
1. When there

can be no confusion, we denote the equivalence class of G again by G.
The preorder induces a partial order on X that we continue to denote by �. The

free splitting graph is the simplicial graph with vertex set X and edges corresponding to
domination G � Γ. For G,Γ ∈ X , we denote by dX (G,Γ) the distance between G and Γ
in the free splitting graph. This the fewest number of edges in an edge path between the
two vertices.

Suppose that G is a free splitting and let ρ : Fn → Aut(G) denote the action homomor-
phism. Given Φ ∈ Aut(Fn), the homomorphism ρ ◦ Φ: Fn → Aut(G) defines a new free
splitting we denote by G · Φ. This defines a right action by Aut(Fn) on the free splitting
graph. As Inn(Fn) acts trivially, this induces an action of Out(Fn) by automorphisms on
the free splitting graph.

There is a natural Out(Fn)–equivariant map from the sphere graph to the free splitting
graph. Given a sphere system S ⊂ M , we define a tree G with vertex set consisting of
the components of M −S and edges corresponding to non-empty intersection between the
closures of the components. The action of Fn on M induces a cocompact action of Fn
on G by automorphisms such that the stabilizer of every edge is trivial, i.e., G is a free
splitting. This map is a simplicial isomorphism [AS11, Lemma 2].

3. The Guirardel core

In this section we give the definition of Guirardel core of two trees as it is presented
in [Gui05] specialized to the case of trees in Xfill.

3.1. A core for a pair of tree actions. A ray in G ∈ Xfill is an isometric embedding
~r : R+ → G. An end of G is an equivalence class of rays under the equivalence relation
of having finite Hausdorff distance. The set of all ends is called the boundary of G and is
denoted by ∂G.

A direction is a connected component of G− {x}, where x is a point in G. A direction
δ ⊂ G determines a subset ∂δ ⊂ ∂G consisting of all ends for which every representative
ray intersects δ in a non-empty (equivalently unbounded) subset. Given an edge e ⊂ G
we denote by ~e the edge with a specific orientation. This determines a direction δ~e ⊂ G
by taking the component of G − {x} that contains e, where x is the initial vertex of ~e.
We will denote by ~e∞ ⊂ ∂∞G the set of ends with a representative that crosses ~e with the
specified orientation, i.e., ~e∞ = ∂δ~e.

A quadrant in G× Γ is the product δ1 × δ2 of two directions δ1 ⊂ G and δ2 ⊂ Γ.

Definition 3.1. Fix a basepoint (∗1, ∗2) ∈ G× Γ and consider a quadrant Q = δ1 × δ2 ⊂
G× Γ. We say that Q is heavy if there exists a sequence gk ∈ Fn so that

(1) (gk∗1, gk∗2) ∈ Q
(2) dG(gk∗1, ∗1)

k→∞−→ ∞ and dΓ(gk∗2, ∗2)
k→∞−→ ∞

Otherwise, we say that Q is light.

The core of G× Γ is what remains when one has removed the light quadrants.

Definition 3.2 (The Guirardel core). Suppose that G,Γ ∈ Xfill and let L(G,Γ) be the
collection of light quadrants of G× Γ. The (Guirardel) core of G and Γ is the subset

Core(G,Γ) = (G× Γ)−

 ⋃
Q∈L(G,Γ)

Q

 .

1Experts may recognize Xfill as the vertices in the spine of the Culler–Vogtmann outer space [CV86].
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It follows from the definition that Core(G,Γ) is isomorphic to Core(Γ, G) via the swap
(x, y) 7→ (y, x). For more details and examples see [Gui05, BBC10].

3.2. Computing the core. There is an algorithm to compute the core for trees G,Γ ∈
Xfill. This suffices to compute the core for any free splittings G0,Γ0 ∈ X . Indeed, if the
given trees are not filling, they can be “blown-up” to filling trees G,Γ ∈ Xfill by replacing
vertices with non-trivial stabilizer in the quotient graph of groups G0/Fn and Γ0/Fn with
roses of of the appropriate rank. There are domination maps p : G→ G0 and π : Γ→ Γ0

and we have that Core(G0,Γ0) = (p× π)(Core(G,Γ)). This material appears in [BBC10,
Section 2] with slightly different terminology and notation. We provide proofs of the most
relevant parts necessary for the sequel.

Definition 3.3. Suppose that G,Γ ∈ Xfill. An Fn–equivariant map f : G→ Γ is called a
morphism if:

(1) f linearly expands every edge across a tight edge path; and
(2) at each vertex of G there are adjacent edges e, e′ such that f(e) ∩ f(e′) is trivial,

i.e., there is more than one gate at each vertex.

Such a map f induces an Fn–equivariant homeomorphism f∞ : ∂G→ ∂Γ. Indeed, this
follows by bounded cancellation, for instance see [Coo87]. Next, we state the criterion
provided in [BBC10] regarding the existence of squares in the core.

Lemma 3.4 ([BBC10, Lemma 2.3]). Let f : G → Γ be a morphism between G,Γ ∈ Xfill.
Given two edges e ⊂ G and η ⊂ Γ, the square e× η is in the core Core(G,Γ) if and only if
for every choice of orientations of the edges e and η the subset f∞(~e∞)∩~η∞ is non-empty.

This condition is very natural in the following way. Given a curve α on a closed surface
X, each lift α of α to the universal cover X determines a partition of ∂X (which is
homeomorphic to S1) into two subsets α+ and α−. For two curves α, β on X that intersect

minimally, lifts α, β to X intersect if and only if for every choice of ∗, ∗′ ∈ {+,−} the set
α∗ ∩ β∗′ is non-empty.

Using f , it is a simple matter to determine when this condition is met for a given
pair of edges. We discuss this now. By the interior of a simplicial subtree we mean all
non-extremal edges.

Definition 3.5. Suppose that G,Γ ∈ Xfill, f : G→ Γ is a morphism and η ∈ Γ is an edge.

We let Pfη be the set of edges in G whose image under f traverses η. In other words, Pfη is
the set of edges containing f−1(η). Since f is a morphism, by bounded cancellation, the

set Pfη is finite.

Let Hfη be the interior of the convex hull of Pfη and let P̂fη = Pfη −Hfη . Notice that the

interior of the convex hull of P̂fη is also Hfη . Suppose e ∈ Hfη and ~e is an orientation of

e. We say ~e can escape Pfη if there is an embedded ray of the form ~e · ~r such that ~r does

not cross any edge of P̂fη . Define the consolidated convex hull CHfη of Pfη to be the set of

edges in e ∈ Hfη such that both orientations of e can escape Pfη .

Lemma 3.6. For every vertex v ∈ G there is a ray ~r originating at v that is disjoint from

Pfη .

Proof. If the lemma were false, then for every edge e adjacent to v the image f(e) would
contain the initial edge in the path connecting f(v) to η. This violates condition (2) in
Definition 3.3. �
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Figure 1. A schematic of the sets Pfη (blue), P̂fη , Hfη (red) and CHfη (green).

The following simple condition tells exactly when a square is in the core.

Lemma 3.7. Let G,Γ ∈ Xfill, fix morphisms f : G → Γ and φ : Γ → G and consider a
pair of edges e ⊂ G and η ⊂ Γ. The square e× η is in Core(G,Γ) if and only if one of the
two following equivalent conditions holds:

• e ⊆ CHfη .

• η ⊆ CHφe .

Proof. We prove the first of the two equivalent statements; the fact that they are equivalent
follows from the symmetry of the construction of the core. For simplicity, we omit the
superscript f on the various subsets from Definition 3.5 during the proof of this lemma.

By Lemma 3.4, what needs to be shown is that e ⊆ CHη if and only if for each orientation
~e of e and orientation ~η of η there is a ray ~r crossing ~e with the specified orientation such
that f∞(~r ) ∈ ~η∞.

First suppose that e ⊆ CHη and fix an orientation ~e on e. As e ⊆ CHη, there is a ray

~r0 = ~e · ~u such that ~u is disjoint from P̂η. Let e0 be the last edge on ~r0 that is in CHη
and decompose ~r0 = ~u0 · ~e0 · ~u1 where ~u0 may be trivial. It is easy to verify that the ray
~u1 is disjoint from Pη. As e0 ⊆ Hη, there is a ray of the form ~e0 · ~u2 where ~u2 is not
disjoint from Pη. (It may be that ~u1 and ~u2 have non-trivial intersection.) Let e1 be the
first edge on ~u2 that is contained in Pη and ~p the oriented edge path from ~e to ~e1. By
Lemma 3.6, there is a ray ~v1 originating at the terminal vertex of ~p that is disjoint from
Pη. Let ~r1 = ~p · ~v1. We now see that:

#|~r1 ∩ Pη| = #|~r0 ∩ Pη|+ 1

Since ~r0 and ~r1 originate from the same vertex, their f∞–images lie in ~η∞ for opposite
choices of orientation of η. By Lemma 3.4, this shows that e× η ⊆ Core(G,Γ).

For the converse we suppose that e * CHη. If further, e * Hη, then there is a choice of
orientation ~e such that for every ray of the form ~e·~r, the ray ~r misses Pη. Therefore, there is
an orientation on η, say ~η, such that f∞(~e∞)∩~η∞ = ∅. By Lemma 3.4, e×η * Core(G,Γ).

Thus we can assume that e ⊆ Hη − CHη. Hence, there is a choice of orientation ~e
that cannot escape, i.e., for every ray form ~e · ~r, the ray ~r must contain some edge in

P̂η. By Lemma 3.6, we see that each such ray ~r can only contain a single edge of Pη.
Again, there is an orientation on η, say ~η, such that f∞(~e∞) ∩ ~η∞ = ∅. By Lemma 3.4,
e× η * Core(G,Γ). �
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~e ~e0

~e1

~u0

~u1

~u2

~v1

Figure 2. Rays ~r0 (blue) and ~r1 (red) witnessing e ⊆ CHη in Lemma 3.7.

Since the Core(G,Γ) is defined without reference to the morphism f : G→ Γ, Lemma 3.7
shows that CHfη and CHφe do not depend on the actual morphism used to compute them.
As such, we will drop the superscripts from these sets for the remainder.

4. Sphere systems and the core

In Section 2 we described an Out(Fn)–equivariant association between sphere systems
and free splittings respecting the notion of filling: (S,Sfill)↔ (X ,Xfill). In Section 3, given
a pair of free splittings G,Γ ∈ Xfill, we described how to construct their Guirardel core
Core(G,Γ). The goal of this section is given a pair of filling sphere systems S,Σ ∈ Sfill to
construct a 2–dimensional square complex Core(S,Σ). We then show that when the pair
of sphere systems (S,Σ) is associated to the pair of free splittings (G,Γ) there is a Fn–
equivariant isomorphism from Core(S,Σ) → Core(G,Γ) of square complexes. Moreover,
this association is Out(Fn)–equivariant with respect to the actions on Xfill and Sfill. This
association is implicit in the proof of Proposition 2.1 in [Hor12]. We explain the connection
in more details here and provide an alternative proof. The in depth description is necessary
for understanding the effect of surgery on the core that we describe in Section 5.

4.1. Hatcher’s normal form. Central to the understanding of sphere systems in M is
Hatcher’s notion of normal form. He originally defined normal form only with respect
to a maximal sphere systems Σ [Hat95] and extended this to filling sphere systems in
subsequent work with Vogtmann [HV96]. We recall this definition now. The sphere system
S is said to be in normal form with respect to Σ if every sphere s ∈ S either belongs to
Σ, or intersects Σ transversely in a collection of circles that split s into components called
pieces such that for each component Π ⊂M − Σ one has:

(1) each piece in Π meets each boundary sphere in ∂Π in at most one circle, and
(2) no piece in Π is a disk that is isotopic relative to its boundary to a disk in ∂Π.

Hatcher proved that a sphere system S can always be homotoped into normal form
with respect to the maximal sphere system Σ and that such a form is unique up to
homotopy [Hat95, HV96]. Hensel–Osajda–Przytycki generalized Hatcher’s definition of
normal form to non-filling sphere systems and in a way that is obviously symmetric with
respect to the two sphere systems [HOP14]. With their notion, two sphere systems S and
Σ are in normal form if for all s ∈ S and σ ∈ Σ one has:

(1) s and σ intersect transversely in at most one circle, and
(2) none of the disks in s− σ is isotopic relative to its boundary to a disk in σ.



8 M. CLAY, Y. QING, AND K. RAFI

These notions are equivalent when Σ is filling [HOP14, Section 7.1].

4.2. A core for a pair of sphere systems. Suppose that S and Σ are filling sphere
systems in M and that they are in normal form. An S–piece is the closure of a component
of S −Σ. Likewise, a Σ–piece is the closure of a component of Σ− S. By piece, we mean
either an S–piece or a Σ–piece (this agrees with the use of piece in Section 4.1).

Lemma 4.1. Suppose that X is the intersection of a component of M−S and a component
of M − Σ. Then the following statements are true.

(1) X is connected.
(2) ∂X is the union of S–pieces and Σ–pieces and moreover, different pieces are subsets

of different spheres.
(3) If Y is also the intersection of a component of M −S and a component of M −Σ,

then either X = Y , their closures are disjoint, or ∂X ∩ ∂Y is a piece.

Proof. This follows from the description of normal form, details are left to the reader. �

The first item in Lemma 4.1 implies that the intersection of a component of M −S and
a component of M − Σ is either empty or a component of M − (S ∪ Σ).

Definition 4.2. Suppose that S and Σ are filling sphere systems in M and that they are
normal form. The core of S and Σ, denoted Core(S,Σ), is the square complex defined as
follows.

• Vertices correspond to components of M − (S ∪ Σ). Such a region corresponds to
the intersection of a component P ⊂ M − S and a component Π ⊂ M − Σ. We
denote the vertex by (P,Π).
• There is an edge between two vertices when the closures of the corresponding

components of M − (S ∪ Σ) have non-trivial intersection. By Lemma 4.1, each
edge corresponds to a piece. If it is an S–piece, then it is the closure of s ∩ Π for
some sphere s ∈ S and component Π ⊂ M − Σ. We denote the edge by (s,Π).
Likewise, if it is an Σ–piece, then it is the closure of P ∩ σ for some component
P ⊂M − S and sphere σ ∈ Σ . In this case, we denote the edge by (P, σ).
• Suppose that s ∈ S and σ ∈ Σ have non-empty intersection. Let P1, P2 ⊂M − S

be the components whose boundary contains s and let Π1, Π2 ⊂ M − Σ be the
components whose boundary contains σ. Then four edges (s,Π1), (P1, σ), (s,Π2)
and (P2, σ) form the boundary of a square with vertices (P1,Π1), (P2,Π1), (P2,Π2)
and (P1,Π2) which is then filled in. The square is denoted by s× σ.

Remark 4.3. We always assume that S and Σ do not share a sphere. Otherwise The-
orem 1.1 is trivial. However the core in this case would be disconnected and make the
exposition more complicated. There is a procedure to add diagonal edges resulting in the
augmented core, which is connected. See [Gui05] for details.

Let G, Γ ∈ Xfill be the free splittings corresponding to S and Σ respectively. We will
show that the two notions of the core, Core(S,Σ) and Core(G,Γ), are isomorphic as Fn–
square complexes. We will do so by showing that their horizontal hyperplanes agree. To
this end we make the following definition.

Definition 4.4. The shadow of σ ∈ Σ is the union of the edges e ⊂ G whose associated
sphere in S intersects σ. We denote the shadow by Shadow(σ) ⊂ G.

Observe that the shadow of σ is isomorphic to the tree in σ that is dual to the intersection
circles between σ and S. Now will show how to relate the two definitions of the core. We
will make use of the following notion.
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(P1,Π1)(P2,Π1)

(P1,Π2)(P2,Π2)

(s,Π1)

(s,Π2)

(P1, σ)(P2, σ)

σ

s

Figure 3. Edges (s,Π1), (P1, σ), (s,Π2) and (P2, σ) form the boundary
of a square s× σ.

Definition 4.5. If G ∈ X corresponds to a sphere system S ∈ S, and ι : G ↪→ M is an
Fn–equivariant embedding, we say ι(G) is dual to S if each sphere s ∈ S intersects exactly
one edge of ι(G), namely the image of the corresponding edge, and this intersection is
transverse and a single point. We say that ι is a dual embedding (for S).

It is a routine matter to construct a dual embedding for a given free splitting. We need
to show that we can make it in some sense normal to Σ.

Lemma 4.6. There exists a dual embedding ι : G ↪→M for S so that for each edge e ∈ G
and sphere σ ∈ Σ, ι(e) and σ are either disjoint or intersect transversely at a single point
in the interior of ι(e).

Proof. Let ι0 : G ↪→ M be a dual embedding. By general position, we can assume that
ι0(G) ∩ S ∩ Σ = ∅ and that Σ is disjoint from the vertices of ι0(G).

Suppose that for some edge e ⊂ G, the image ι0(e) intersects some sphere in Σ in more
than one point. Let s ∈ S be the sphere corresponding to e. Fix some innermost pair of
intersection points x, y ∈ ι0(e) and let σ ∈ Σ be the corresponding sphere. Let I be the
subsegment of ι0(e) with endpoints x and y.

Notice that any circle of intersection of S∩σ that separates x and y in σ must correspond
to a sphere s′ ∈ S such that s′ ∩ I 6= ∅. Indeed, if not, since S and Σ are in normal form,
there would a loop consisting of I and an arc in σ that intersects some sphere in S exactly
once. This is a contradiction as spheres in S are separating.

Therefore, there is an arc J ⊂ σ that intersects exactly the same set of spheres of S as
I, which is either s or the empty set. We can then homotope I to J and continue pushing
in this direction to reduce the number of intersection points between ι0(e) and Σ by two.
Equivariantly perform this process to obtain a new dual embedding ι1 : G→M that has
fewer Fn–orbits of intersect between the image of G and Σ.

Iterating this procedure we arrive at ι : G→M as in the statement of the lemma. �
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If ι : G ↪→ M is an Fn–equivariant embedding so that ι(G) is transverse to Σ we can
create a map kι : G→ Γ by sending an edge e to the edge path in Γ corresponding to the
spheres in Σ crossed by ι(e).

Lemma 4.7. There exists a dual embedding ι : G ↪→M for S so that the associated map
kι : G→ Γ is a morphism.

Proof. Whenever a dual embedding ι0 : G ↪→ M satisfies Lemma 4.6 the image of each
edge e ⊂ G is a tight edge path in Γ. Thus the only way that such a dual embedding
ι0 : G → M fails to produce a morphism is if there is some vertex v ∈ G with adjacent
edges e1, . . . , e` (oriented to have v as their initial vertex) and sphere σ ∈ Σ so that the
first intersection point of ι0(ei)∩Σ lies in σ for each i = 1, . . . , `. Arguing as in Lemma 4.6
we can equivariantly homotope ι0 to locally reduce the number of intersections between
the image of G and Σ by pushing the image of v across σ and pushing subarcs of edges
with both endpoints on σ across σ as well.

Iterating this procedure we arrive at ι : G→M as in the statement of the lemma. �

A dual embedding ι : G→M satisfying the conclusions of of Lemma 4.6 and 4.7 is said
to be normal to Σ.

Proposition 4.8. Suppose that S and Σ are filling sphere systems in M and that G and
Γ are the associated trees. Fix an edge η ∈ Γ and let σ ∈ Σ be the associated sphere. If
ι : G ↪→M is a dual embedding that is normal to Σ then Shadow(σ) = CHη = Hkιη .

Proof. Suppose that ι : G ↪→ M is a dual embedding that is normal to Σ. Let e ⊂ G be
an edge and s ∈ S the sphere corresponding to e.

First suppose that e ⊆ Shadow(σ). Thus s∩ σ is non-empty and as the sphere systems
are in normal form, this intersection is a single circle. Let X be one of the four components
of M − (s ∪ σ). Decompose ∂X = d ∪ δ where d is a subdisk of s and δ is a subdisk of σ.

We claim that ι−1(X) ⊆ G contains an infinite subtree. Suppose otherwise, thus ι−1(X)
is a finite sub-forest T . At most one extremal vertex of T corresponds to an intersection
of ι(e) and s (which is in d), the remaining extremal vertices correspond to intersections
of δ with edges in ι(G).

If T is empty or has some component contained in an edge of G then an innermost disk
of δ (with respect to the intersection circles δ∩S) is homotopic relative to its boundary to
a disk in S, violating the assumption that S and Σ are in normal form. Else, if for some
component T0 ⊆ T , we have that ι(T0) does not intersect s, then for any interior vertex
of T , as we saw in the proof of Lemma 4.7, the map kι only has one gate, violating the
assumption that ι is not normal.

Thus we may assume that T is connected and has some interior vertex v, that we
assume is adjacent to some extremal edge of T that is not contained in e. We label the
edges e0, e1, . . . , e` adjacent to v where ι(ei) intersects σ for i = 1, . . . `. Let si be the
spheres of S corresponding to ei for i = 0, . . . `. Then σ must be disjoint from si for
i = 1, . . . , ` for otherwise there is a component of M − (si ∪ σ) whose pre-image in G
contains a component that contained in a single edge, which we already ruled out. But in
this case we have that σ− s0 contains a disk isotopic relative to its boundary to a disk in
s0, which again violates the assumption that S and Σ are in normal form.

Hence we can find a ray ~r starting with e so that ι(~r) is eventually contained in X. Since
X was arbitrary, this shows that for each orientation of ~e for e and ~eta for η we can find a
ray ~r, crossing ~e with the specified orientation so that kι(~r ) ∈ ~η∞. By Lemma 3.4, we have
that e× η ⊆ Core(G,Γ) and so e ⊆ CHη by Lemma 3.7. Hence Shadow(σ) ⊆ CHη ⊆ Hkιη .
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Now suppose that e ⊆ Hkιη . Then for each orientation ~e, there is a ray of the form
~e · ~r so that kι(~r) intersects η and hence ι(~r) intersects σ. Since s separates M and σ is
connected, this shows that s intersects σ, i.e., e ⊆ Shadow(σ). Hence Hkιη ⊆ Shadow(σ)
completing the proof. �

In other words, Proposition 4.8 states that Shadow(σ) ⊂ G is the interior of the convex
hull of k−1

ι (σ).
Recall the relation between a sphere system S and the corresponding free splitting G

mentioned in Section 2: vertices of G correspond to connected components M − S and
edges corresponding to non-empty intersection between the closures of the components,
i.e., spheres in S. We can define a map Core(S,Σ)→ G× Γ as follows:

• The image of a vertex (P,Π) is the vertex (v, ν) ∈ G × Γ where v is the vertex
corresponding to P ⊂M − S and ν is the vertex corresponding to Π ⊂M − Σ.
• The image of an edge (s,Π) is the edge (e, ν) ⊂ G × Γ where e is the edge cor-

responding to s ∈ S and ν is the vertex corresponding to Π ⊂ M − Σ. Likewise,
the image of an edge (P, σ) is the edge (v, η) ⊂ G × Γ where v is the vertex
corresponding to P ⊂M − S and η is the edge corresponding to σ ∈ Σ.
• The image of the square s× σ is e× η ⊂ G× Γ where e is the edge corresponding

to s ∈ S and η is the edge corresponding to σ ∈ Σ.

The following theorem is implicit in the proof of [Hor12, Proposition 2.1]. There,
Horbez uses a characterization by Guirardel of the core as the minimal closed, connect,
Fn–invariant subset of G×Γ that have connected fibers [Gui05, Proposition 5.1]. We avoid
using this characterization by using Lemma 3.7 and Proposition 4.8.

Theorem 4.9. If G,Γ ∈ Xfill correspond to S,Σ ∈ Sfill, which do not share a sphere, then
the map Core(S,Σ)→ G×Γ induces an Fn–equivariant isomorphism of square complexes
Core(S,Σ)→ Core(G,Γ).

Proof. It is clear that the map is injective, Fn–equivariant and preserves the square
structure. We just need to show that the image is Core(G,Γ). For each σ ∈ Σ, let
Sσ = {s ∈ S | s ∩ σ 6= ∅}. Notice that the edges in G corresponding to Sσ is Shadow(σ)
by definition. We can decompose the core Core(S,Σ) vertically into horizontal slices
Cσ = {s × σ | s ∈ Sσ}. Now fix an σ and let η by the corresponding edges of Γ. Then
image of the strip Cσ is exactly the set of squares {e× η | e ⊆ Shadow(σ)}. By Proposi-
tion 4.8 we can also write this as {e× η | e ⊆ CHη}. By Lemma 3.7 we can further write
this as {e× η | e× η ⊆ Core(G,Γ)}. Hence the image of the map is as claimed. �

5. Surgery and the core

The purpose of this section is to show how the core changes along a surgery path in the
sphere graph.

5.1. Surgery Sequences. Suppose that S,Σ ∈ S and assume that they are in normal
form. We now describe a path from S to Σ in S using a surgery procedure introduced
by Hatcher [Hat95]. It is exactly these paths that appear in the the main theorem of this
paper.

Fix a sphere σ ∈ Σ that intersects some spheres of S. The intersection circles define a
pattern of disjoint circles on σ, each of which bounds two disks on σ. Choose an innermost
disk δ in this collection, i.e., a disk that contains no other disk from this collection, and
let α be its boundary circle. The sphere s ∈ S containing α is the union of two disks d+

and d− that share the boundary circle α. Briefly, surgery replaces the sphere σ with new
spheres d+ ∪ δ and d− ∪ δ. One problem that arises is that the new sphere system and S
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are not in normal form. This happens when some innermost disk δ′ in a sphere σ′ ∈ Σ is
parallel rel s to δ. To address this, we remove all such disks at once so that the resulting
sphere system and S are in normal form (Lemma 5.1).

Let {αi}`i=k be the maximal family of intersection circles in s ∩ Σ such that:

(1) k ≤ 0 ≤ `,
(2) αi ⊂ d− for i ≤ 0 and αi ⊂ d+ for i ≥ 0 (this implies that α0 = α), and
(3) for k ≤ i < `, the circles αi and αi+1 co-bound an annulus Ai ⊂ s whose interior

is disjoint from Σ.

Related to these circles, we let {δi}λi=κ be the maximal family of innermost disks in Σ such
that:

(1) κ ≤ 0 ≤ λ,
(2) ∂δi = αi, and
(3) for κ ≤ i < λ, the sphere δi ∪ Ai ∪ δi+1 bounds an embedded 3–ball, i.e., δi and

δi+1 are parallel rel s.

See Figure 4 for an example illustrating this set-up and notation.

α2

δ1

α1α0

δ0

α−1

δ−1

α−2

δ−2

α−3

δ−3

α−4

d+d−

s

Figure 4. An example illustrating the curves {αi} and the disks {δi}. The
green sphere is s, its intersection with Σ is in black and the red disks are
the innermost disks in Σ. The small black box represents an obstruction
to isotoping the disk bounded by α2 to δ1 relative to s. In this example
κ = −3 and λ = 1.

Using this set-up we can now describe a surgery of S. Let δ− be a parallel copy of δκ
rel s such that ∂δ− and ακ co-bound an annulus whose interior is disjoint from Σ and
Aκ. Similarly let δ+ be a parallel copy of δλ rel s such that ∂δ+ and αλ co-bound an

annulus whose interior is disjoint from Σ and Aλ. Set d̂− to be the subdisk of d− with

boundary ∂δ− and set d̂+ to be the subdisk of d+ with boundary ∂δ+ We get two new

spheres s− = d̂− ∪ δ− and s+ = d̂+ ∪ δ+. We say that Ŝ = (S − Fn{s}) ∪ Fn{s+, s−} is
obtained from S by performing a surgery on S with respect to Σ.

In what follows, it is important to record the history of the portions of the new spheres
and so we introduce notion to this effect. Suppose that Ŝ is the result of a surgery of
S with respect to Σ and that ŝ ∈ Ŝ is (a translate of) one of the newly created spheres

s∗ = d̂∗∪ δ∗ for ∗ ∈ {+,−}. We call d∗ the portion of ŝ from S, denote it by ŝS . Similarly,
we call δ∗ the portion of ŝ from Σ, denote it by ŝΣ. Thus ŝ = ŝS ∪ ŝΣ. Notice that ŝS ⊆ S
and also that ŝΣ is parallel rel s to a disk in Σ. For all other spheres s ∈ Ŝ we set sS = s
and sΣ = ∅.
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Our definition of surgery differs slightly from the standard in three ways: one, we do
not remove parallel spheres in Ŝ, two, we perform surgery along parallel innermost disks
in a single step, and three, we do not isotope S′ to be in normal form with respect to
Σ. That we do not remove parallel spheres is in keeping with our definition of sphere
systems from Section 2. Justification of the latter two differences is the following lemma
that shows that by performing surgery along the parallel innermost disks we can eliminate
the need to perform a subsequent isotopy.

Lemma 5.1. Let Ŝ be the result of a surgery on S with respect to Σ. Then Ŝ and Σ are
in normal form.

Proof. Suppose otherwise. As S and Σ are in normal form by assumption and normal form
is a local condition, it must be that one of the newly created spheres is not in normal form
with respect to Σ. Denote this sphere by ŝ = d̂ ∪ δ where d̂ is a subdisk of the surgered
sphere s ∈ S and δ is a disk parallel rel s to a disk in Σ. Any intersection between ŝ
and some sphere of Σ must lie in d̂ ⊂ s and hence ŝ and a given sphere in Σ intersect
transversely in at most one circle as the same held for s ∈ S.

Therefore, if ŝ is not in normal form with respect to Σ, then there is a sphere σ ∈ Σ
such that one of the disks in ŝ−σ, denote it d, is isotopic relative to its boundary to a disk
in σ, denote it δ′. Without loss of generality, we can assume that this disk is innermost on
ŝ, i.e., no subdisk of d is isotopic relative to its boundary to a disk in some sphere of Σ.
The disk d cannot lie entirely in d̂ since s and Σ are in normal form by assumption. Hence
d contains δ. Let A be the annulus such that d = A ∪ δ. Since d ∪ δ′ bounds a 3–ball, the
assumptions that S and Σ are in normal form and that d is innermost implies that Σ is
disjoint from the interior of A. This contradicts the maximality assumption on the family
of disks {δi}λi=κ. Indeed, without loss of generality we can assume that δ = δ+. Then
Aλ ∪A is an annulus in s whose interior is disjoint from Σ and so ∂δ′ = αλ+1 and further

δλ ∪ (Aλ ∪A) ∪ δ′ bounds an embedded 3–ball. Hence Ŝ and Σ are in normal form. �

Definition 5.2. A surgery sequence from S to Σ is a finite sequence of sphere systems:

S = S1, . . . , Sm

such that Si+1 is the result of a surgery of Si with respect to Σ and dS(Σ, Sm) ≤ 1.

It is a standard fact that if dS(S,Σ) ≥ 2, then there is a surgery sequence from S, see for
instance [HH15, Lemma 2.2]. Further dS(Si, Si+1) ≤ 2 as both Si and Si+1 are dominated
by Si ∪ Si+1.

The discussion and notion regarding portions from S and from Σ make sense for surgery
sequences as well by induction. Indeed, suppose that Si+1 is obtained from Si by a surgery
with respect for Σ, specifically, assume that the (orbit of the) sphere s ∈ Si is split into

(the orbit of) two spheres s− = d̂− ∪ δ− and s+ = d̂+ ∪ δ+ in Si+1. Then we have

s = d̂− ∪A ∪ d̂+ for some annulus A, the boundary curves of which are parallel to circles
in Σ rel s. By choosing A sufficiently narrow enough, we can assume that the annuli of s
witnessing the isotopy are contained in sS . We set sS∗ = d̂∗ ∩ sS and sΣ

∗ = (d̂∗ ∩ sΣ) ∪ δ∗
for ∗ ∈ {+,−}. All other spheres in Si+1 are also in Si − {s} and as such the portions
from S and Σ remain unchanged. See Figure 5.

Lemma 5.3. Suppose that S = S1, . . . , Sm is a surgery sequence from S to Σ. Then for
every s ∈ Si, the subset sS is connected.

Proof. Using induction, we can conclude that the subset sΣ is a union of disks, each parallel
rel s to a disk in Σ. Hence, sS is the complement of finitely many disks in s and therefore
connected. �



14 M. CLAY, Y. QING, AND K. RAFI

α+

δ+

α−

δ− δ5δ4δ1 δ2 δ3

s+s−

s

Figure 5. An illustration showing a decomposition of s ∈ Si and the
resulting spheres s−, s+ ∈ Si+1 into their portions from S and Σ. In this
example sΣ = {δ1, δ2, δ3, δ4, δ5}, sΣ

− = {δ1, δ2, δ3, δ−} and sΣ
− = {δ4, δ5, δ+}.

The portions from S are the complements in the respective spheres.

We remark that parallel spheres in Si may have different histories, that is, s1, s2 ∈ Si
may be parallel even though sS1 and sS2 are not parallel. For a surgery sequence S =
S1, . . . , Sm from S to Σ we set

SSi =
⋃
s∈Si

sSi and SΣ
i =

⋃
s∈Si

sΣ
i .

5.2. Rips moves and surgery steps. Suppose that S and Σ are filling sphere systems
and assume that they are in normal form. Let S = S1, S2, . . . , Sm be a surgery sequence
from S to Σ and let Σ = Σ1,Σ2, . . . ,Σµ be a surgery sequence from Σ to S. We describe
Core(Si,Σj) as (in some appropriate sense) an intersection of Core(Si,Σ) and Core(S,Σj).
We start by giving an embedding of Core(Si,Σ) and Core(S,Σj) into Core(S,Σ). This
embedding is constructed inductively. A single step in the construction is reminiscent to
one of the elementary moves of the Rips machine [BF95, CH14]. We start with a definition.

Definition 5.4. Suppose that S and Σ are filling sphere systems in M . We define ∂S ,
the S–boundary of Core(S,Σ), to be the subset of Core(S,Σ) consisting of the (open)
edges (P, σ) that are the face of exactly one square or vertices (P,Π) that are the vertex
of exactly 3 edges of the form (P, σ), (P, σ′) and (s,Π). A connected component of ∂S is
called an S–sides of Core(S,Σ). Similarly, we define ∂Σ, the Σ–boundary of Core(S,Σ),
to be the subset of Core(S,Σ) consisting of the (open) edges (s,Π) that are the face of
exactly one square or vertices (P,Π) that are the vertex of exactly 3 edges of the form
(s,Π), (s′,Π) and (P, σ). A connected component of ∂Σ is called an Σ–sides of Core(S,Σ).

The union of an S–side with the set of the (open) squares that have a face contained
in that side is called a maximal S–boundary rectangle. That is, in a S–maximal boundary
rectangle, all of the squares are of the form s0 × σ for some fixed s0 ∈ S. A Σ–maximal
boundary rectangle is similarly defined from a connected component of the Σ–side. A Rips
move on (S,Σ) is the removal of the Fn–orbit of a (S– or Σ–)maximal boundary rectangle.

If R is a maximal boundary rectangle in Core(S,Σ), we let Core(S,Σ)R denote the result
of the associated Rips move. We like to think of the removal of the maximal boundary
rectangle as collapsing the rectangle by pushing across the adjacent squares.

We postpone presenting an example until after the following theorem.
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Theorem 5.5. Suppose that S and Σ are filling sphere systems in M and let Ŝ be the
result of a surgery on S with respect to Σ. There is a S–maximal boundary rectangle
R ⊆ Core(S,Σ) so that Core(S,Σ)R is isomorphic to Core(Ŝ,Σ). Moreover, for each S–
maximal boundary rectangle, R, there is a sphere σ ∈ Σ and innermost disk on σ that
defines a surgery S 7→ Ŝ so that Core(Ŝ,Σ) is isomorphic to Core(S,Σ)R.

Proof. Assume Ŝ is obtained from S by a surgery on a sphere s0 ∈ S and a disk δ that is
part of the sphere system Σ, whose boundary α lies on s and is otherwise disjoint from S.
By Lemma 5.1 Ŝ and Σ are in normal form and so we can use the combinatorics of Ŝ and
Σ to build Core(Ŝ,Σ).

We make use of the notation introduced in Section 5.1. Let {δi}λi=κ be the maximal
family of disks in Σ parallel rel s where δ0 = δ. Let A be the union of the annuli Ai ⊂ s0

and d+, d− the components of s0 − A. Thus δκ ∪ A ∪ δλ bounds a 3–ball B. The two
spheres obtained by surgery of s using this family, s+ and s−, are parallel to d+ ∪ δλ and
d− ∪ δκ respectively.

Let P+ ∈ M − S be the component that contains the interior of B and let P− be the
other component with s as a boundary. Each disk δi is contained in some sphere σi ∈ Σ.
For each κ ≤ i < λ, there are components Πi ⊂M −Σ such that both σi, σi+1 ⊂ ∂Πi. We
claim that the collections of edges and vertices:

(P+, σκ), (P+,Πκ), (P+, σκ+1), . . . , (P+, σλ)

is a side. Indeed, each edge (P+, σi) is the face of only s × σi and each vertex (P+,Πi)
is only also adjacent to (s0,Πi). The first of these observations is due to the fact that
P+ ∩ σi = δi is a disk; the second observation due to the fact that P+ ∩ Πi is bounded
by δi ∪ Ai ∪ δi+1. Maximality of this collection follows from maximality of the collection
{δi}λi=κ.

Let R be the corresponding maximal boundary rectangle of Core(S,Σ). We will show

that Core(Ŝ,Σ) is isomorphic to Core(S,Σ)R. To do so, we will construct an injection of

square complexes Core(Ŝ,Σ) ↪→ Core(S,Σ) whose image is Core(S,Σ)R.
Components in M − S that are not in the orbit of P+ and P− are also components of

M − Ŝ. But M − Ŝ has 3 other components; P̂− which is obtained from P− by adding a
neighborhood of s and a neighborhood of the 3–ball B bounded by δκ ∪ A ∪ δλ, P+

+ and

P−+ which are contained in the two components of P+ −B. In other words, we have:

M − Ŝ =
(
(M − S)− Fn{P+, P−}

)
∪ Fn{P̂−, P+

+ , P
−
+

}
.

There is an Fn–equivariant map ι : M − Ŝ →M − S defined by P+
+ , P

−
+ 7→ P+, P̂− 7→ P−

and the identity on the other orbits. Also, there is a Fn–equivariant map ε : Ŝ → S defined
by s+, s− 7→ s0 and the identity on the other orbits.

Using ι, we get a map on the 0–skeleton of Core(Ŝ,Σ) defined by (P,Π) 7→ (ι(P ),Π).
In order for this to be well-defined, we need to know that if P ∩Π 6= ∅, then ι(P )∩Π 6= ∅
also. If P is not in the orbit of P̂−, then this follows as P ∩ Π ⊆ ι(P ) ∩ Π. Finally, since

P̂− = P− ∪ B and no component of M − Σ is contained in B, any component of M − Σ

that intersects P̂− necessarily intersects P− as well.
We extend over the 1–skeleton using ε: (s,Π) 7→ (ε(s),Π). This map is well-defined

since any intersection between s+, or s−, with a component of M −Σ is contained in the
portion of s+, or s− respectively, from S, i.e., d+, or d− respectively. Notice that this is

consistent with the mapping on the 0–skeleton. The edge (s+,Π) in Core(Ŝ,Σ) is sent to

(s0,Π). The vertices of (s0,Π) are (P+
+ ,Π) and (P̂−,Π), which are the images of (P+

+ ,Π)

and (P̂−,Π). Other verifications are similar.
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Finally, we extend over the 2–skeleton: s×σ 7→ ε(s)×σ. Since any intersection of s+ or
s− with Σ is contained in the portion from S, this map is well-defined. Again, the map on
the 2–skeleton is consistent with the maps on 1–skeleton and 0–skeleton by construction.

The map Core(Ŝ,Σ)→ Core(S,Σ) is Fn–equivariant and preserves the square structure.
The map is not surjective as no 2–cell is mapped to the squares associated with s × σi,
i.e., the image of the map is exactly Core(S,Σ)R.

The converse is similar, if s0× σ1, . . . , s0× σλ forms an S–maximal boundary rectangle
R, then one shows that there are disks δi ⊂ σi that are parallel rel s0 and that surgery
using the family {δi}λi=1 results in the sphere system Ŝ where Core(Ŝ,Σ) is isomorphic to
Core(S,Σ)R. �

Example 5.6. Here we describe a Rips move and the corresponding surgery explicitly in
an example. Consider a sphere s ∈ S associated to the edge b in the dual graph G. In the
example depicted in Figure 6, s intersects 7 spheres in Σ; spheres σ0, . . . , σ6 associated to
edges η0, . . . , η6 in Γ. We denote the intersection circle between s and σi by αi. The slice
over s in Core(S,Σ) consists of squares associated to intersection circles between s and Σ
that is,

Cs = {s× σi | i = 0, . . . , 6}.
In the language of trees, Cs is associated to the slice over b, which is

b× Shadow(s) = {b× ηi | i = 0, . . . , 6} ⊂ G× Γ.

There are two components of M − S that have s as their boundary sphere. In this
example, the component Pl, which we call left, has 3 other boundary spheres (associated
to edges a1, a2 and a3) and the component Pr on the right has two other boundary spheres
(associated to edges c1 and c2).

Note that Figure 6 indicates that the sphere σ1 intersects spheres in S associated to
edges a1, b and c2 since the core contains squares a1×η1, b×η1 and c2×η1. However, the
sphere σ2 does not intersect spheres associated to edges a1, a2 and a3. But, σ2 intersects s,
hence, the circle α2 must bound a disk δ2 that is the intersection of σ2 with Pl. Similarly,
circles α3, α4 and α5 bound disks δ3, δ4 and δ5 that are, respectively, intersections of
spheres σ3, σ4 and σ5 with Pl, (thus the squares b× ηi, i = 2, . . . , 5, have boundary edges
on their left side). The circle α2 also bounds a disk in σ2 in Pr (thus the square b× η2 has
a boundary edge on its right side).

The disks δ2 and δ3 are parallel and the disks δ4 and δ5 are also parallel, however,
the two sets of disks are not parallel to each other (see Figure 7). Thus, there are two
maximal boundary rectangles from the left; R = b× (η2∪η3) and R′ = b× (η4∪η5). More
precisely, let Π be the component of M − Σ with σ0, σ3 and σ4 as its boundary spheres.
Then, referring to Definition 5.4, we see that the vertex (Pl,Π) is not in the S–boundary
of Core(S,Σ) because it is the vertex of 5 different edges. Hence, the union of R and R′

is not a boundary rectangle.
Define S′ to be the sphere system obtained from S by applying the surgery on the set

of parallel disks {δ4, δ5} (and their Fn–orbits). The surgery results in two spheres s1 and
s2 associated to edges b1 and b2 and the removal of the maximal boundary rectangle R.
It appears that removal of this rectangle makes the slice over b disconnected. However,
the two components are slices over the edges b1 and b2.

To summarize, the surgery along the disks {δ4, δ5}, changes G by splitting the edge b
and changes Core(S,Σ) by removing the maximal boundary rectangle R = b × (η4 ∪ η5),
resulting in Core(S,Σ)R ∼= Core(S′,Σ).

A different splitting of b into b1 and b2 partitioning the a edges into {a1, a3} and {a2}
does not arise as a surgery and could potentially increase the volume of the core.
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a1a2

a3

b c1

c2

η1

η2

η3

η4

η5

η6

η0

a1
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b1

b2

c1

c2

Figure 6. The left hand side depicts the slice Cs and squares attached
to it in Core(S,Σ). Consider the maximal S–boundary rectangle R =
b× (η4∪ η5). A Rips move along R is associated to a surgery on the sphere
s or a splitting of the edge b in the graph G. The right side depicts the
associated portion of Core(S,Σ)R = Core(S′, R).

α4
α5

α6

α3
α2

α1

α0

s

Figure 7. The curves α0, . . . , α6 are intersection circles between the
sphere s and the spheres σ0, . . . , σ6 respectively. The circles α2, α3, α4

and α5 bound a disk in Pl. However, the circle α3 and α4 are not parallel.

5.3. The intersection of cores. Applying Theorem 5.5 to the surgery sequence S =
S1, S2, . . . , Sm we obtain maps for i = 1, . . . ,m− 1:

ki,i+1 : Core(Si+1,Σ)→ Core(Si,Σ).

that are the composition of the isomorphism Core(Si+1,Σ) ∼= Core(Si,Σ)R for the corre-
sponding maximal boundary rectangle and the natural inclusion Core(Si,Σ)R ↪→ Core(Si,Σ).
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By symmetry there are also maps for j = 1, µ− 1:

κj,j+1 : Core(S,Σj+1)→ Core(S,Σj).

Since these map exist for all 1 ≤ i ≤ m − 1, 1 ≤ j ≤ µ − 1, we can define “inclusions”
alluded to at the beginning of this section:

ki = k1,2k2,3...ki−2,i−1ki−1,i : Core(Si,Σ)→ Core(S,Σ) (5.1)

κj = κ1,2κ2,3...κj−2,j−1κj−1,j : Core(S,Σj)→ Core(S,Σ) (5.2)

Remark 5.7. On the level of squares, the map ki : Core(Si,Σ) → Core(S,Σ) is easy to
describe. For each ŝ ∈ Si, we have that ŝS ⊆ s for a unique s ∈ S. The map is defined by
ŝ× σ → s× σ.

The following is the fundamental concept essential to the proof of the main theorem.

Proposition 5.8. With the above set-up, assume

ki
(
Core(Si,Σ)

)
∪ κj

(
Core(S,Σj)

)
= Core(S,Σ), (5.3)

then Si and Σj are in normal form. Furthermore, there exists an isomorphism

Φ: Core(Si,Σj)→ ki
(
Core(Si,Σ)

)
∩ κj

(
Core(S,Σj)

)
.

Proof. First, we show that every intersection circle between Si and Σj is in fact in SSi ∩ΣΣ
j .

This is because a square in Core(S,Σ) associated to an intersection circle in SΣ
i ∩ ΣS

j is

neither in ki
(
Core(Si,Σ)

)
(SΣ
i does not intersect Σ) nor in κj

(
Core(S,Σj)

)
(ΣS

j does not

intersect S) and by the assumption (5.3) every square in Core(S,Σ) is in the image of one
of these two maps.

This observation implies that Si and Σj are in fact in normal form. In fact, pick spheres
si ∈ Si and σj ∈ Σj . We will show that si and σj intersect at most once. Otherwise, sSi
and σΣ

j intersect more than once. But, by Lemma 5.3, sSi and σΣ
j are connected, which

means there is a sphere s ∈ S that contains sSi and a sphere σ ∈ Σ that contains σΣ
j .

Hence, s and σ intersect more than once. This contradicts the fact that S and Σ are in
normal form.

Now consider a square si × σj in Core(Si,Σj) associated to an intersection circle α.
Then α is an intersection circle in SSi ∩ ΣΣ

j . Which mean it is an intersection circle in
both S ∩ Σj and Si ∩ Σ and thus there are spheres s ∈ S, σ ∈ Σ for which s ∩ σ = α and
sSi ⊆ s, σΣ

j ⊆ σ. Hence, s × σ is contained in both ki
(
Core(Si,Σ)

)
and κj

(
Core(S,Σj)

)
and so we define Φ(si × σj) = s× σ. Normal form implies that the map is injective.

To prove that Φ is surjective, suppose s× σ is in ki
(
Core(Si,Σ)

)
. Then the associated

intersection circle in SSi . Similarly, assuming s× σ is in κj
(
Core(S,Σj)

)
implies that the

associated intersection circle in ΣΣ
j . Therefore, it also lies in Si ∩ Σj . Hence there are

spheres si ∈ Si and σj ∈ Σj such that Φ(si × σj) = s× σ. �

For future reference, we record the following corollary:

Corollary 5.9. As long as (5.3) is satisfied, Core(Si,Σj+1) can obtained from Core(Si,Σj)
by a Rips move.

Proof. LetR be a maximal Σj–boundary rectangle in Core(S,Σj) such that Core(S,Σj)R ∼=
Core(S,Σj+1). Thus R consists of squares s1 × σ̂, . . . , s` × σ̂ for some σ̂ ∈ Σj and
s1, . . . , s` ∈ S. Let σ ∈ Σ be such that σ̂Σ ⊆ σ and consider the set Cσ,i of squares
of the form ŝ× σ in Core(Si,Σ). Then ki(Cσ,i) ∩ κj(R) corresponds via the isomorphism
in Proposition 5.8 to a maximal Σj–boundary rectangle in Core(Si,Σj) whose collapse
results in Core(Si,Σj+1). �
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6. Proof of Theorem 1.1

To finish the proof of the main theorem, we proceed as follows using the set-up from
the previous section. We start with a lemma giving a necessary condition for two sphere
systems to be at a bounded distance. A free edge is an edge that does not bound any
squares.

Lemma 6.1. If Core(Si,Σj) contains a free edge, then the two sphere systems are of
distance at most 2 in the sphere graph.

Proof. Edges in the core are associated to spheres in either sphere system Si or Σj and
squares are associated to intersection circles between sphere systems. Hence, a free edge
in the core is associated to a sphere in either Si or Σj that does not intersect any other
spheres from the other system. Thus this sphere can be added to both sphere systems.
That is, Si and Σj have distance 2 in the sphere graph. �

We now prove Theorem 1.1. We restate it for convenience.

Theorem 1.1. Let S and Σ be two filling sphere systems and let

S = S1, S2, . . . , Sm, dS(Sm,Σ) ≤ 1

be a surgery sequence starting from S towards Σ and

Σ = Σ1,Σ2, . . . ,Σµ, dS(Σµ, S) ≤ 1

be a surgery sequence in the opposite direction. Then, for every Si there is a Σj so that
dS(Si,Σj) ≤ 2.

Proof. Fix two filling sphere systems S and Σ and surgery paths as in the statement of
the theorem. For every Si we need to find Σj with dS(Si,Σj) ≤ 2. Fix an i = 1, . . . ,m
and let j be the largest index where the equality

ki
(
Core(Si,Σ)

)
∪ κj

(
Core(S,Σj)

)
= Core(S,Σ) (6.1)

still holds. Note that the equation holds when j = 1. But, since κj
(
Core(S,Σj)

)
eventually

contains no squares (for instance, when j = µ) and ki
(
Core(Si,Σ)

)
is a proper subset of

Core(S,Σ) for each i > 1, there exists an index j + 1 for which (6.1) does not hold.
We will show that Core(Si,Σj) contains a free edge. By Lemma 6.1, this will complete

the proof. Let s× σ be a square in Core(S,Σ) that is not contained in ki
(
Core(Si,Σ)

)
∪

κj+1

(
Core(S,Σj+1)

)
. By (6.1), s× σ is contained in κj

(
Core(S,Σj)

)
. Thus a surgery on

Σj has deleted the intersection circle associated to this square. By Corollary 5.9, s× σ is
part of a maximal Σj–boundary rectangle. That is, there is a component Π ⊆M − Σ for
which σ ∈ ∂Π so that the edge (s,Π) is a boundary edge of s × σ but not the boundary
edge of any other square in κj

(
Core(S,Σj)

)
.

We also know that s × σ is not contained in ki
(
Core(Si,Σ)

)
. Thus, if (s,Π) is an

edge in ki
(
Core(Si,Σ)

)
then we have that (s,Π) is a free edge in ki

(
Core(Si,Σ)

)
∩

κj
(
Core(S,Σj)

) ∼= Core(Si,Σj) (Proposition 5.8). If this is not the case, then there is
some i0 < i such that (s,Π) lies between two squares s × σ′ and s × σ′′ that are part of
a maximal Si0–boundary rectangle in Core(Si0 ,Σ) that is collapsed in the formation of
Core(Si0+1,Σ). Then neither of these squares are in ki

(
Core(Si,Σ)

)
at least one of these

squares is not in κj
(
Core(S,Σj)

)
. However, this would contradict (6.1). Therefore, (s,Π)

is a free edge in Core(Si,Σj). �
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