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Abstract. Given isometric actions by a group G on finitely many
δ–hyperbolic metric spaces, we provide a sufficient condition that
guarantees the existence of a single element in G that is hyperbolic
for each action. As an applicationwe prove a conjecture of Handel
and Mosher regarding relatively fully irreducible subgroups and
elements in the outer automorphism group of a free group [13].

1. Introduction

A δ–hyperbolic space is a geodesic metric space where geodesic tri-
angles are δ–slim: the δ–neighborhood of any two sides of a geodesic
triangle contains the third side. Such spaces were introduced by
Gromov in [8] as a coarse notion of negative curvature for geodesic
metric spaces and since then have evolved into an indispensable tool
in geometric group theory.

There is a classification of isometries of δ–hyperbolic metric spaces
analogous to the classification of isometries of hyperbolic space Hn

into elliptic, hyperbolic and parabolic. Of these, hyperbolic isome-
tries have the best dynamical properties and are often the most de-
sired. For example, typically they can be used to produce free sub-
groups in a group acting on a δ–hyperbolic space [8, 5.3B], see also [3,
III.Γ.3.20]. Another application is to show that a certain element does
not have fixed points in its action on some set. Indeed, if the set natu-
rally sits inside of a δ–hyperbolic metric space and the given element
acts as a hyperbolic isometry then it has no fixed points (in a strong
sense). This strategy has been successfully employed for the curve
complex of a surface and for the free factor complex of a free group
by several authors [4, 5, 6, 7, 10, 19, 23, 24].
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Leininger (DMS-1510034) and gratefully acknowledges support from U.S. National Science Foundation
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We consider the situation of a group acting on finitely many δ–
hyperbolic spaces and produce a sufficient condition that guarantees
the existence of a single element in the group that is a hyperbolic
isometry for each of the spaces. Of course, a necessary condition is
that for each of the spaces there is some element of the group that is
a hyperbolic isometry. Thus we are concerned with when we may
reverse the quantifiers: ∀∃ { ∃∀. Our main result is the following
theorem.
Theorem 5.1. Suppose that {Xi}i�1,...,n is a collection of δ–hyperbolic
spaces, G is a group and for each i � 1, . . . , n there is a homomorphism
ρi : G→ Isom(Xi) such that:

(1) there is an element fi ∈ G such that ρi( fi) is hyperbolic; and
(2) for each g ∈ G, either ρi(g) has a periodic orbit or is hyperbolic.

Then there is an f ∈ G such that ρi( f ) is hyperbolic for all i � 1, . . . , n.
Remark 1.1. After the completion of this paper we have been alerted
that Theorem 5.1 should follow from randomwalk techniques devel-
oped in [2] and [22]. Hereweprovide an elementary and constructive
proof.

Essentially, we assume that there are no parabolic isometries and
that elliptic isometries are relatively tame.

As an application of our main theorem we prove a conjecture of
Handel and Mosher which exactly involves the same type of quan-
tifier reversing: ∀∃ { ∃∀. Consider a finitely generated subgroup
H < IAN(Z/3) < Out(FN) and a maximal H–invariant filtration of
FN , the free group of rank N , by free factor systems

∅ � F0 @ F1 @ · · · @ Fm � {[FN]}
(see Section 6). Handel and Mosher prove that for each multi-edge
extension Fi−1 @ Fi there exists some ϕi ∈ H that is irreducible
with respect to Fi−1 @ Fi [13, Theorem D]. They conjecture that
there exists a single ϕ ∈ H that is irreducible with respect to each
multi-edge extensionFi−1 @ Fi . We show that this is indeed the case.
Theorem 6.6. For each finitely generated subgroup H < IAN(Z/3) <
Out(FN) and each maximal H–invariant filtration by free factor systems
∅ � F0 @ F1 @ · · · @ Fm � {[FN]}, there is an element ϕ ∈ H such that
for each i � 1, . . . ,m such that Fi−1 @ Fi is a multi-edge extension, ϕ is
irreducible with respect to Fi−1 @ Fi .
Our paper is organized as follows. Section 2 contains background

on δ–hyperbolic spaces and their isometries. In Section 3 we general-
ize a construction of the first author and Pettet from [5] that is useful
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to constructing hyperbolic isometries. This result is Theorem 3.1. We
examine certain cases that will arise in the proof of the main theorem
to see how to apply Theorem 3.1 in Section 4. The proof of Theo-
rem 5.1 constitutes Section 5. The application to Out(FN) appears in
Section 6.

Acknowledgements. Wewould like to thankLeeMosher andCamille
Horbez for useful discussions. We are grateful to Camille Horbez for
informing us about his work with Vincent Guirardel [9]. We thank
the referee for a careful reading and for providing useful sugges-
tions. The second author thanks Ilya Kapovich and Chris Leininger
for guidance and support.

2. Background on δ–hyperbolic spaces

In this section we recall basic notions and facts about δ–hyperbolic
spaces, their isometries and their boundaries. The reader familiar
with these topics can safely skip this section with the exception of
Definition 2.8. References for this section are [1], [3] and [21].

2.1. δ–hyperbolic spaces. We recall the definition of a δ–hyperbolic
space given in the Introduction.

Definition 2.1. Let (X, d) be a geodesic metric space. A geodesic
triangle with sides α, β and γ is δ–slim if for each x ∈ α, there is some
y ∈ β∪ γ such that d(x , y) ≤ δ. The space X is said to be δ–hyperbolic
if every geodesic triangle is δ–slim.

There are several equivalent definitions that we will use in the
sequel. The first of these is insize. Let ∆ be the geodesic triangle with
vertices x, y and z and sides α from y to z, β from z to x and γ from
x to y. There exist unique points α̂ ∈ α, β̂ ∈ β and γ̂ ∈ γ, called the
internal points of ∆, such that:

d(x , β̂) � d(x , γ̂), d(y , γ̂) � d(y , α̂) and d(z , α̂) � d(z , β̂).
The insize of ∆ is the diameter of the set {α̂, β̂, γ̂}.

Another notion makes use of the so-called Gromov product:(
x . y

)
w �

1
2(d(x , w) + d(w , y) − d(x , y)). (2.1)

The Gromov product is said to be δ–hyperbolic (with respect to w ∈ X)
if for all x , y , z ∈ X:

(x . z)w ≥ min
{(

x . y
)

w ,
(
y . z

)
w

}
− δ.
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Proposition 2.2 ([1, Proposition 2.1], [3, III.H.1.17 and III.H.1.22]).
The following are equivalent for a geodesic metric space X:

(1) There is a δ1 ≥ 0 such that every geodesic triangle in X is δ1–slim,
i.e., X is δ1–hyperbolic.

(2) There is a δ2 ≥ 0 such that every geodesic triangle in X has insize
at most δ2.

(3) There is a δ3 ≥ 0 such that for some (equivalently any) w ∈ X, the
Gromov product is δ3–hyperbolic.

Henceforth, when we say X is a δ–hyperbolic space we assume
that δ is large enough to satisfy each of the above conditions.

2.2. Boundaries. There is a useful notion of a boundary for a δ–
hyperbolic space that plays the role of the “sphere at infinity” forHn .
This space is defined using equivalence classes of certain sequences
of points in X and the Gromov product. Fix a basepoint w ∈ X.

Definition 2.3. We say a sequence (xn) ⊆ X converges to infinity if(
xi . x j

)
w → ∞ as i , j → ∞. Two such sequences (xn), (yn) are

equivalent if
(
xi . y j

)
w →∞ as i , j →∞. The boundary of X, denoted

∂X, is the set of equivalence classes of sequences (xn) ⊆ X that
converge to infinity.

One can show that the notion of “converges to infinity” and the
subsequent equivalence relation do not depend on the choice of base-
point w ∈ X [21]. The definition of the Gromov product in (2.1)
extends to boundary points x̂ , ŷ ∈ ∂X by:(

x̂ . ŷ
)

w � inf{lim inf
n

(
xn . yn

)
w}

where the infimum is over sequences (xn) ∈ x̂, (yn) ∈ ŷ. If y ∈ X
then we set: (

x̂ . y
)

w � inf{lim inf
n

(
xn . y

)
w}

where the infimum is over sequences (xn) ∈ x̂. For x ∈ X, theGromov
product

(
x . ŷ

)
w is defined analogously. Let X � X ∪ ∂X.

We will make use of the following properties of the Gromov prod-
uct on X.

Proposition 2.4 ([1, Lemma 4.6], [3, III.H.3.17]). Let X be a δ–hyperbolic
space.

(1) If x , y ∈ X then
(
x . y

)
w � ∞ ⇐⇒ x � y ∈ ∂X.

(2) If x̂ ∈ ∂X and (xn) ⊆ X then (x̂ . xn)w → ∞ as n → ∞ ⇐⇒
(xn) ∈ x̂.
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(3) If x̂ , ŷ ∈ ∂X and (xn) ∈ x̂, (yn) ∈ ŷ then:(
x̂ . ŷ

)
w ≤ lim inf

n

(
xn . yn

)
w ≤

(
x̂ . ŷ

)
w − 2δ.

(4) If x , y , z ∈ X then:
(x . z)w ≥ min

{(
x . y

)
w ,

(
y . z

)
w

}
− δ.

Proposition 2.5 ([1, Proposition 4.8]). The following collection of subsets
of X forms a basis for a topology:

(1) B(x , r) � {y ∈ X | d(x , y) < r}, for each x ∈ X and r > 0; and
(2) N(x̂ , k) � {y ∈ X |

(
x̂ . y

)
w > k} for each x̂ ∈ ∂X and k > 0.

2.3. Isometries. Asmentioned in the Introduction, there is a classifi-
cation of isometries of a δ–hyperbolic space X into elliptic, parabolic
andhyperbolic [8, 8.1.B].Wewill notmakeuse of parabolic isometries
and so do not give the definition here.
Definition 2.6. An isometry f ∈ Isom(X) is elliptic if for any x ∈ X,
the set { f nx | n ∈ Z} has bounded diameter.

An isometry f ∈ Isom(X) is hyperbolic if for any x ∈ X there is
a t > 0 such that t |m − n | ≤ d( f m x , f n x) for all m , n ∈ Z. In this
case, one can show, the sequence ( f n x) ⊆ X converges to infinity and
the equivalence class it defines in ∂X is independent of x ∈ X. This
point in ∂X is called the attracting fixed point of f . The repelling fixed
point of f is the attracting fixed point of f −1 and is represented by the
sequence ( f −n x) ⊆ X.

The action of a hyperbolic isometry f ∈ Isom(X) on X has “North-
South dynamics.”
Proposition 2.7 ([8, 8.1.G]). Suppose that f ∈ Isom(X) is a hyperbolic
isometry and that U+,U− ⊂ X are disjoint neighborhoods of the attracting
and repelling fixed points of f respectively. There exists an N ≥ 1 such that
for n ≥ N :

f n(X −U−) ⊆ U+ and f −n(X −U+) ⊆ U−.
We will make use of the following definition.

Definition2.8. SupposeX is a δ–hyperbolic space and f , g ∈ Isom(X)
are hyperbolic isometries. Let A+, A− be the attracting and repelling
fixed points of f in ∂X and let B+, B− be the attracting and repelling
fixed points of g in ∂X. We say f and g are independent if:

{A+,A−} ∩ {B+, B−} � ∅.
Hyperbolic isometries that are not independent are said to be depen-
dent.



6 M. CLAY AND C. UYANIK

3. A recipe for hyperbolic isometries

In this section we prove the principal tool used in the proof of the
main result of this article, producing a single element in the given
group that is hyperbolic for each action. The idea is to start with
elements f and g that are hyperbolic for different actions and then
combine them into a single element f a gb that is hyperbolic for both
actions. A theorem of the first author and Pettet shows that if g does
not send the attracting fixed point of f to the repelling fixed point,
then f a g is hyperbolic in the first action for large enough a. We can
reverse the roles to get that f gb is hyperbolic in the second action
for large enough b. In order to simultaneously work with powers for
both f and g, we need a uniform version of this result. That is the
content of the next theorem, which generalizes Theorem 4.1 in [5].

Theorem 3.1. Suppose X is a δ–hyperbolic space and f ∈ Isom(X) is a
hyperbolic isometry with attracting and repelling fixed points A+ and A−
respectively. Fix disjoint neighborhoods U+ and U− in X for A+ and A−
respectively. Then there is an M ≥ 1 such that if m ≥ M and g ∈ Isom(X)
then f m g is a hyperbolic isometry whenever gU+ ∩U− � ∅.

The proof follows along the lines of Theorem 4.1 in [5]. In the
following two lemmas we assume the hypotheses of Theorem 3.1.
The first lemma is obvious in the hypothesis of Theorem 4.1 in [5] but
requires a proof in this setting.

Lemma 3.2. Given a point x ∈ U+∩X there are constants t > 0 and C ≥ 0
such that if g ∈ Isom(X) is such that gU+ ∩ U− � ∅ then d(x , f m gx) ≥
mt − C for all m ≥ 0.

Proof. Let A � { f n x |n ∈ Z} and for z ∈ X let
dz � inf{d(x′, z) | x′ ∈ A}.

As f is a hyperbolic isometry, there is a constant τ ≥ 1 such that:
1
τ
|m − n | ≤ d( f m x , f n x) ≤ τ |m − n | .

This shows that for any z ∈ X the set πz � {x′ ∈ A | d(x′, z) � dz} is
nonempty and finite.
Claim 1: There is a constant D ≥ 0 such that for any z ∈ X and xz ∈ πz :

d(x , z) ≥ d(x , xz) + d(xz , z) − D.

Proof of Claim 1. Fix a point xz ∈ πz and geodesics α from xz to x, β
from z to xz and γ from z to x. Let ∆ be the geodesic triangle formed
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with these segments and α̂ ∈ α, β̂ ∈ β and γ̂ ∈ γ be the internal
points of ∆. These points satisfy the equalities:

d(z , β̂) � d(z , γ̂) � a
d(x , γ̂) � d(x , α̂) � b

d(xz , α̂) � d(xz , β̂) � c

As insize of geodesic triangles is bounded by δ in a δ–hyperbolic
space, we have that d(α̂, β̂), d(β̂, γ̂), d(γ̂, α̂) ≤ δ. By the Morse
lemma [3, III.H.1.7], there is a constant R, only depending on τ and
δ, and a point y ∈ A such that d(α̂, y) ≤ R. Thus we have that:

d(z , y) ≤ d(z , β̂) + d(β̂, α̂) + d(α̂, y) ≤ a + δ + R.

As xz ∈ πz we have:
a + c � d(xz , z) ≤ d(z , y) ≤ a + δ + R

and so c ≤ δ + R. Letting D � 2δ + 2R we compute:
d(x , z) � a + b

� (b + c) + (a + c) − 2c
≥ d(x , xz) + d(xz , z) − D. �

Claim 2: There is a constant M0 ∈ Z such that if z < U− and f m x ∈ πz
then m ≥ M0.

Proof of Claim 2. Let xz � f m x ∈ πz and without loss of generality
assume that m ≤ 0. Using the constant D from Claim 1 we have:

(xz . z)x �
1
2 (d(x , xz) + d(x , z) − d(xz , z))
≥ d(x , xz) − D/2.

Suppose that i ≤ m and let α be a geodesic from f i x to x. The
Morse lemma implies that there is an y ∈ α such that d(xz , y) ≤ R.
Therefore:

d(x , xz) + d(xz , f i x) ≤ d(x , y) + d(y , f ix) + 2R

� d(x , f ix) + 2R.

Hence for such i we have:(
xz . f i x

)
x
�

1
2

(
d(x , xz) + d(x , f ix) − d(xz , f ix)

)
≥ d(x , xz) − R.
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This shows that (xz .A−)x ≥ d(x , xz)−R−2δ andso forK � max{D/2, R+

2δ} we have:

(z .A−)x ≥ min {(xz . z)x , (xz .A−)x} − δ ≥ d(x , xz) − K − δ

As z < U−, the Gromov product (z .A−)x is bounded independently
of z and hence d(x , xz) is also bounded. �

Now we will finish the proof of the lemma. Fix a point xg ∈ πgx .
Clearly we have f m xg ∈ π f m gx for m ≥ 0. As gx < U−, by Claim 2 we
have xg � f M0+n x for some n ≥ 0 and therefore:

d(x , f m xg) � d(x , f M0+n+m x) ≥ d(x , f m+n x) − d(x , f M0 x)

≥ 1
τ

m − τ |M0 | .

As f m xg ∈ π f m gx , Claim 1 implies:

d(x , f m gx) ≥ d(x , f m xg) + d( f m xg , f m gx) − D

≥ 1
τ

m − (τ |M0 | + D).

Since the constants τ, D and M0 only depend on f , x and the open
neighborhoods U+ and U−, the lemma is proven. �

The next lemma replaces Lemma 4.3 in [5] and its proof is a small
modification of the proof there.

Lemma 3.3. Fix x ∈ X∩U+ and for m ≥ 0 let αm be a geodesic connecting
x to f m gx. Then there is an ε ≥ 0 and M1 ≥ 0 such that for m ≥ M1 the
concatenation of the geodesics αm · f m gαm is a (1, ε)-quasi-geodesic.

Proof. Let dm � d(x , f m gx).
As gU+ ∩ U− � ∅ we have U+ ∩ g−1U− � ∅ and so the Gromov

product
(
g−1 f −m x . f m x

)
x is bounded independent of g and m ≥ M1

for some constant M1. Indeed, by Proposition 2.5 there is a k ≥ 0
such that N(A+, k) ⊆ U+ and M1 ≥ 0 such that f −m x ∈ U− and
f m x ∈ N(A+, k + 2δ) for m ≥ M1. Hence

(
A+ . g−1 f −m x

)
x ≤ k and so(

g−1 f −m x . f m x
)

x ≤ k + δ as:

min{
(
A+ . f m x

)
x ,

(
g−1 f −m x . f m x

)
x} − δ ≤

(
A+ . g−1 f −m x

)
x ≤ k

for m ≥ M1.
By making M1 larger, we can assume that for m ≥ M1 we have

f m(X −U−) ⊆ N(A+, k + 4δ) by Proposition 2.7. Since gx , x < U−, we
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have that f m gx , f m x ∈ N(A+, k + 4δ) and so
(

f m x g . f m x
)

x ≥ k + 3δ.
Hence

(
g−1 f −m x . f m gx

)
x ≤ k + 2δ as:

min
{(

g−1 f −m x . f m gx
)

x ,
(

f m gx . f m x
)

x

}
−δ ≤

(
g−1 f −m x . f m x

)
x ≤ k+δ.

Therefore for C � k + 2δ and m ≥ M1 we have:
d(x , f m g f m gx) � d(g−1 f −m x , g f m x)

≥ d(g−1 f −m x , x) + d(x , f m gx) − 2C
� 2dm − 2C.

The proof now proceeds exactly as that of Lemma 4.3 in [5]. �

Proof of Theorem 3.1. Using lemmas 3.2 and 3.3 the proof of Theo-
rem 3.1 proceeds exactly like that of Theorem 4.1 in [5]. We repeat
the argument here.
Fix x ∈ U+ ∩ X, and let t > 0 and C ≥ 0 be the constants from

Lemma 3.2 ,and ε > 0 and M1 ≥ 0 be the constants from Lemma 3.3.
For m ≥ M1 we set Lm � d(x , f m gx) ≥ mt − C. As in Lemma 3.3,
let αm : [0, Lm] → X be a geodesic connecting x to f m gx, and let
βm � αm · f m gαm . Then define a path γ : R→ X by:

γ � · · · ( f m g)−1βm

⋃
αm

βm

⋃
f m gαm

f m gβm

⋃
( f m g)2αm

( f m g)2βm · · ·

See Figure 1.

( f m g)−1βm

βm

( f m g)−1x f m gx ( f m g)3x ( f m g)5x

x ( f m g)2x ( f m g)4x

Figure 1. The path γ in the proof of Theorem 3.1.

By Lemma 3.3, γ is an Lm–local (1, ε)–quasi-geodesic and hence
for m large enough, γ is a (λ′, ε′)–quasi-geodesic from some λ′ ≥ 1
and ε′ ≥ 0 (see [3, III.H.1.7 and III.H.1.13] or [5, Theorem 4.4]).

Let N be such that t � 1
λ′Lm N − ε′ > 0. Then for any k , ` ∈ Z we

have

d(( f m g)Nk x , ( f m g)N`x) ≥ 1
λ′

Lm N |k − ` | − ε′ ≥ t |k − ` | .

Thus ( f m g)N is hyperbolic and therefore so is f m g. �
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We conclude this section with an application of Theorem 3.1 to
dependent hyperbolic isometries (Theorem [5, Theorem 4.1] would
suffice as well).

Proposition 3.4. Suppose X is a δ–hyperbolic space and f , g ∈ Isom(X)
are dependent hyperbolic isometries. There is an N ≥ 0 such that if n ≥ N
then f gn is hyperbolic.

Proof. Let A+, A−, B+, B− ∈ ∂X be the attracting and repelling fixed
points for f and g respectively. Then f B+ , B− as one of these points
is fixed by f . Thus there are neighborhoods V+ and V− for B+ and
B− respectively in X such that f V+ ∩ V− � ∅. Let N be the constant
from Theorem 3.1 applied to this set-up after interchanging the roles
of f and g. Hence gn f , and therefore the conjugate f gn as well, is
hyperbolic when n ≥ N . �

4. Finding neighborhoods

We now need to understand when we can find neighborhoods
satisfying the hypotheses of Theorem 3.1 for all powers (or at least
lots of powers) of a given g. There are two cases that we examine:
first when g has a fixed point and second when g is hyperbolic.

Proposition 4.1. Suppose X is a δ–hyperbolic space and f ∈ Isom(X) is
a hyperbolic isometry with attracting and repelling fixed points A+ and A−
in ∂X. Suppose g ∈ Isom(X) has a fixed point and consider a sequence of
elements (gk)k∈N ⊆ 〈g〉. Then either:

(1) there are disjoint neighborhoods U+ and U− of A+ and A− respec-
tively and a constantM ≥ 1 such that if k ≥ M then gkU+∩U− � ∅;
or

(2) there is a subsequence (gkn ) so that gkn A+→ A−.
Further, if gA− � A− then (1) holds.

Proof. Let p ∈ X be such that gp � p. Thus gk p � p for all k ∈ N.
Fix a system of decreasing disjoint neighborhoods Uk

− of A− and
Uk

+ of A+ indexed by the natural numbers so that:

(x .A+)p ≥ k + δ for x ∈ Uk
+, and

(x .A−)p ≥ k + δ for x ∈ Uk
−.

This implies that for any two points x , x′ ∈ Uk
+ we have that

(x . x′)p ≥ min{(x .A+)p , (x′ .A+)p} − δ ≥ k.

Likewise for any two points y , y′ ∈ Uk
− we have that

(
y . y′

)
p ≥ k.
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For each n ∈ N, define In � {k ∈ N | gkUn
+ ∩ Un

− , ∅}. If In is a
finite set for some n, then (1) holds for the neighborhoods U− � Un

−
and U+ � Un

+ where M � max In + 1.
Otherwise, there is a strictly increasing sequence (kn)n∈N such that

kn ∈ In . Hence, for each n ∈ N, there is an element xn ∈ Un
+ such that

gkn xn ∈ Un
− . In particular,(

gkn xn .A−
)

p ≥ n + δ. (4.1)

On the other hand, since xn ∈ Un
+ and gkn fixes the point p, we have(

gkn xn . gkn A+

)
p �

(
gkn xn . gkn A+

)
gkn p

� (xn .A+)p ≥ n + δ. (4.2)

Combining (4.1) and (4.2), we get
(
gkn A+ .A−

)
p ≥ n for any n ∈ N.

Hence (2) holds.
Now suppose that gA− � A−. As A+ , A−, there is a constant

D ≥ 0 such that
(

f −k p . f k p
)

p ≤ D for all k ∈ N. For any n ∈ Z, we
have that

(
f −k p . gn f −k p

)
p → ∞ as k → ∞. In particular, for each

n ∈ Z, there is a constant Kn ≥ 0 such that
(

f −k p . gn f −k p
)

p ≥ D + δ

for k ≥ Kn . Therefore
(
gn f −k p . f k p

)
p ≤ D + δ for k ≥ Kn as:(

f −k p . f k p
)

p
≥ min

{(
f −k p . gn f −k p

)
p
,
(
gn f −k p . f k p

)
p

}
− δ.

As gp � p, we have
(

f −k p . gn f k p
)

p �
(
g−n f −k p . f k p

)
p and so we

see that
(

f −k p . gn f k p
)

p ≤ D + δ for k ≥ K−n . This shows that (2)
cannot hold if gA− � A−. �

Proposition 4.2. Suppose X is a δ–hyperbolic space and f , g ∈ Isom(X)
are independent hyperbolic isometries. There are disjoint neighborhoods U+

andU− ofA+ andA− and an N ≥ 1 such that if k ≥ N then gkU+∩U− � ∅.

Proof. Let A+, A−, B+, B− ∈ ∂X be the attracting and repelling fixed
points for f and g respectively. As f and g are independent, the set
{A−,A+, B−, B+} consists of 4 distinct points. Take mutually disjoint
open neighborhoods U−,U+,V−,V+ of A−,A+, B−, B+ respectively.
North-South dynamics of the action of g on X implies that there exist
a N ≥ 1 such that gk(X − V−) ⊂ V+ for all k ≥ N . In particular,
gkU+ ⊆ V+ and since V+ ∩ U− � ∅ we see that gkU+ ∩ U− � ∅ for
k ≥ N . �
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5. Simultaneously producing hyperbolic isometries

We can now apply the above propositions via a careful induction
to prove the main result.
Theorem 5.1. Suppose that {Xi}i�1,...,n is a collection of δ–hyperbolic
spaces, G is a group and for each i � 1, . . . , n there is a homomorphism
ρi : G→ Isom(Xi) such that:

(1) there is an element fi ∈ G such that ρi( fi) is hyperbolic; and
(2) for each g ∈ G, either ρi(g) has a periodic orbit or is hyperbolic.

Then there is an f ∈ G such that ρi( f ) is hyperbolic for all i � 1, . . . , n.
Proof. We will prove this by induction. The case n � 1 obviously
holds by hypothesis.

For n ≥ 2, by induction there is an f ∈ G such that for i � 1, . . . , n−
1 the isometry ρi( f ) ∈ Isom(Xi) is hyperbolic. For i � 1, . . . , n − 1,
let Ai

+,Ai
− ∈ ∂Xi be the attracting and repelling fixed points of the

hyperbolic isometry ρi( f ). By hypothesis, there is a g ∈ G so that
ρn(g) ∈ Isom(Xn) is hyperbolic. Let B+, B− ∈ ∂Xn be the attracting
and repelling fixed points of the hyperbolic isometry ρn(g). Our goal
is to find a , b ∈ N so that ρi( f a gb) is hyperbolic for each i � 1, . . . , n.
We begin with some simplifications. If ρn( f ) ∈ Isom(Xn) is hy-

perbolic then there is nothing to prove, so assume that ρn( f ) has
a periodic orbit, and so after replacing f by a power we have that
f has a fixed point. By replacing g with a power if necessary, we
can assume that for i � 1, . . . , n − 1 the isometry ρi(g) is either the
identity or has infinite order. In fact, we can assume that ρi(g) has
infinite order. Indeed, if ρi(g) is the identity, then for all a , b ∈ N we
have ρi( f a gb) � ρi( f a), which is hyperbolic by the inductive hypoth-
esis. Hence any powers for f and g that work for all other indices
between 1 and n − 1 necessarily work for this index i as well. Again,
by replacing g with a power if necessary, we can assume that for
each i � 1, . . . , n − 1 either ρi(g)Ai

− � Ai
− or ρi(gb)Ai

− , Ai
− for each

b ∈ Z − {0}. Finally, replacing g with a further power necessary, we
can assume that for each i � 1, . . . , n − 1 if ρi(g) is not hyperbolic,
then it has a fixed point. Analogously, by replacing f with a power if
necessary, we can assume that the isometry ρn( f ) has infinite order
and that either ρn( f )B− � B− or ρn( f a)B− , B− for a ∈ Z − {0}.

There are various scenarios depending on the dynamics of the
isometries ρi(g) and ρn( f ).

Let E ⊆ {1, . . . , n − 1} be the subset where the isometries ρi(g)
has a fixed point. Let H � {1, . . . , n − 1} − E; this is of course the
subset where ρi(g) is hyperbolic. For i ∈ H, let B i

+, B i
− ∈ ∂Xi be
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the attracting and repelling fixed points of the hyperbolic isometry
ρi(g). We further identify the subset H′ ⊆ H where ρi( f ) and ρi(g)
are independent.

We first deal with the spaces where ρi(g) is hyperbolic. To this
end, fix i ∈ H.

If i ∈ H′, then by Proposition 4.2 there are disjoint neighborhoods
U i

+,U i
− ⊂ Xi of Ai

+ and Ai
− respectively and an Ni so that for k ≥

Ni we have ρi(gk)U i
+ ∩ U i

− � ∅. Applying Theorem 3.1 with the
neighborhoods U+ and U−, there is a Mi so that for a ≥ Mi and
b ≥ Ni the element ρi( f a gb) is hyperbolic.
If i ∈ H − H′ then, by Proposition 3.4, for each a ∈ N there is a

constant Ci(a) ≥ 0 such that the isometry ρi( f a gb) is hyperbolic if
b ≥ Ci(a).
To create a uniform statements in the sequel, for i < H′ (including

i ∈ E), set Ci(a) � 0 for all a ∈ N. Also, set Mi � Ni � 0 for i ∈ H−H′.
Summarizing the situation for far, we let M0 � max{Mi | i ∈ H}

and N0 � max{Ni | i ∈ H}. Then, at this point, we know that if
i ∈ H, a ≥ M0 and b ≥ N0 then the element ρi( f a gb) is hyperbolic so
long as b ≥ Ci(a).
Next we deal with the spaces where ρi(g) has a fixed point. To this

end, fix i ∈ E.
Let E′ ⊆ E be the subset where condition (1) of Proposition 4.1

holds using ρi(gk) � ρi(gN0+k). The analysis here is similar to the
the case when i ∈ H′. By assumption, for i ∈ E′, there are disjoint
neighborhoods U i

+,U i
− ⊂ Xi of Ai

+ and Ai
− respectively and an Ni so

that for k ≥ Ni we have ρi(gk)U i
+ ∩ U i

− � ∅. Applying Theorem 3.1
with the neighborhoods U i

+ and U i
−, there is a Mi so that for a ≥ Mi

the element ρi( f a gb) is hyperbolic if b ≥ Ni .
To summarize again, let M1 � max{Mi | i ∈ H ∪ E′} and N1 �

max{Ni | i ∈ H ∪ E′}. Then at this point, if i ∈ H ∪ E′, a ≥ M1 and
b ≥ N1 then the element ρi( f a gb) if hyperbolic so long as b ≥ Ci(a).
It remains to deal with E−E′; enumerate this set by {i1, . . . , i`}. As

condition (1) of Proposition 4.1 does not hold for ρi1(gk) � ρi1(gN0+k)
acting on Xi1 , there is a subsequence (gkn ) ⊆ (gN0+k) such that
ρi1(gkn )Ai1

+ → Ai1− . By iteratively passing to subsequences of (gkn ),
we can assume that for all i ∈ E − E′, either the sequence of points
(ρi(gkn )Ai

+) ⊆ ∂Xi converges or is discrete.
Notice that for i ∈ E − E′, the the final statement of Proposition 4.1

implies that ρi(g)Ai
− , Ai

−. Coupling this with one of our earlier
simplifications, we have that ρi(gb)Ai

− , Ai
− for all b ∈ Z − {0}.
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Hence, there is a K ∈ N such that for any i ∈ E − E′ the sequence
(gK+kn ) satisfies either: ρi(gK+kn )Ai

+ → pi , Ai
− or (ρi(gK+kn )Ai

+) ⊂
∂Xi is discrete. Indeed, suppose ρi(gkn )Ai

+ → pi (nothing new is
being claimed in the discrete case). If pi < {ρi(gk)Ai

−}k∈Z, then
neither is ρi(gK)pi for any K ∈ N so ρi(gK+kn )Ai

+ → ρi(gK)pi , Ai
−.

Else, if pi � ρi(gKi )Ai
−, then for K , −Ki we have ρi(gK+kn )Ai

+ →
ρi(gK+Ki )Ai

− , Ai
−. So by taking K ∈ N to avoid the finitely many

such −Ki we see that the claim holds. Without loss of generality, we
can assume that K ≥ N1.

Hence for each i ∈ E − E′, by Proposition 4.1, there are disjoint
neighborhoods U i

+,U i
− ⊂ X of Ai

+ and Ai
− respectively and an Ni so

that for n ≥ Ni wehave ρi(gK+kn )U i
+∩U i

− � ∅. Applying Theorem 3.1
with the neighborhoods U i

+ and U i
−, there is a Mi so that for a ≥ Mi

the element ρi( f a gK+kn ) is hyperbolic if n ≥ Ni .
Putting all of this together, let M2 � max{Mi | 1 ≤ i ≤ n − 1} and

let N2 � max{Ni | i ∈ E − E′}. Thus for all i � 1, . . . , n − 1, if a ≥ M2,
and n ≥ N2 then ρi( f a gK+kn ) is hyperbolic so long as K + kn ≥ Ci(a).
(Notice that K + kn ≥ K ≥ N1 by assumption.)

We now work with the action on the space Xn . Interchanging
the roles of f and g and arguing as above using Proposition 4.1 to
the sequence of isometries (ρn( f `)) we either obtain a subsequence
( f `m ) ⊆ ( f `) and constants M3 and N3 so that ρn( f `m gb) is hyperbolic
if m ≥ M3 and b ≥ N3.

Fix some m ≥ M3 large enough so that a � `m ≥ M2 and let
C � max{Ci(a) | 1 ≤ i ≤ n − 1}. Now for n ≥ N2 large enough so
that b � K + kn ≥ max{C,N3} we have that ρi( f a gb) is hyperbolic for
i � 1, . . . , n as desired. �

6. Application to Out(FN)
Let FN be a free group of rank N ≥ 2. A free factor system of FN is

a finite collection A � {[A1], [A2], . . . , [AK]} of conjugacy classes of
subgroups of FN , such that there exist a free factorization

FN � A1 ∗ · · · ∗ AK ∗ B

where B is a (possibly trivial) subgroup, called a cofactor. There is a
natural partial ordering among the free factor systems: Av B if for
each [A] ∈ Athere is a [B] ∈ Bsuch that gAg−1 < B for some g ∈ FN .
In this case, we say that A is contained in Bor B is an extension of A.
Recall, the reduced rank of a subgroup A < FN is defined as

rk(A) � min{0, rk(A) − 1}.
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We extend this to a free factor systems by addition:

rk(A) �
K∑

k�1
rk(Ak)

where A � {[A1], [A2], . . . , [AK]}. An extension A v B is called a
multi-edge extension if rk(B) ≥ rk(A) + 2.

The groupOut(FN)naturally acts on the set of free factor systems as
follows. GivenA� {[A1], [A2], . . . , [AK]}, and ϕ ∈ Out(FN) choose a
representativeΦ ∈ Aut(FN) of ϕ, a realization FN � A1 ∗ · · · ∗AK ∗B of
Aanddefine ϕ(A) to be the free factor system {[Φ(A1)], . . . , [Φ(AK)]}.
Given a free factor system A consider the subgroup Out(FN ; A)
of Out(FN) that stabilizes the free factor system A. The group
Out(FN ; A) is called the outer automorphism group of FN relative to
A, or the relative outer automorphism group if the free factor system A

is clear from context. If A� {[A]}, there is a well-defined restriction
homomorphism Out(FN ; A) → Out(A) we denote by ϕ 7→ ϕ |A [14,
Fact 1.4].

For a subgroup H< Out(FN) and H–invariant free factor systems
F1 v F2, we say thatHis irreducible with respect to the extensionF1 v F2
if for any H–invariant free factor system F such that F1 v F v F2
it follows that either F � F1 or F � F2. We sometimes say that H
is relatively irreducible if the extension is clear from the context. The
subgroup H is relatively fully irreducible if each finite index subgroup
H′ < H is relatively irreducible. For an individual element ϕ ∈
Out(FN), we say that ϕ is relatively (fully) irreducible if the cyclic
subgroup 〈ϕ〉 is relatively (fully) irreducible.
In close analogy with Ivanov’s classification of subgroups of map-

ping class groups [20], in a series of papers Handel andMosher gave
a classification of finitely generated subgroups of Out(FN) [13, 14, 15,
16, 17].

Theorem 6.1 ([13, Theorem D]). For each finitely generated subgroup
H < IAN(Z/3) < Out(FN), each maximal H–invariant filtration by free
factor systems ∅ � F0 @ F1 @ · · · @ Fm � {[FN]}, and each i � 1, ...,m
such that Fi−1 @ Fi is a multi-edge extension, there exists ϕ ∈ Hwhich is
irreducible with respect to Fi−1 @ Fi .

Here, IAN(Z/3) is the finite index subgroup of Out(FN) which is
the kernel of the natural surjection

p : Out(FN) → H1(FN ,Z/3) � GL(N,Z/3).
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For elements in IAN(Z/3), irreducibility is equivalent to full irre-
ducibility hence in the above statement we can also conclude that ϕ
is fully irreducible [13, Theorem B].

Handel and Mosher conjecture that there is a single ϕ ∈ Hwhich
is (fully) irreducible for each multi-edge extension Fi−1 @ Fi [13,
Remark following Theorem D]. The goal of this section is to prove
this conjecture. Invoking theorems of Handel–Mosher and Horbez–
Guirardel, this is (essentially) an immediate application of Theo-
rem 5.1. We state the set-up and their theorems now.
Definition 6.2. LetAbe a free factor system of FN . The complex of free
factor systems of FN relative to A, denoted FF(FN ; A), is the geometric
realization of the partial ordering v restricted to proper free factor
systems that properly contain A.

If A� {[A1], [A2], . . . , [AK]} is a free factor system for FN , its depth
is defined as:

DFF(A) � (2N − 1) −
K∑

k�1

(
2 rk(Ak) − 1

)
The free factor system A is nonexceptional if DFF(A) ≥ 3.
Theorem 6.3 ([12, Theorem 1.2]). For any nonexceptional free factor
systemAof FN , the complex FF(FN ; A) is positive dimensional, connected
and δ–hyperbolic.

Although the group Out(FN) does not act on FF(FN ; A), the nat-
ural subgroup Out(FN ; A) associated to the free factor system Aacts
on FF(FN ; A) by simplicial isometries. In a companion paper Han-
del and Mosher characterize the elements of Out(FN ; A) that act as a
hyperbolic isometry of FF(FN ; A):
Theorem 6.4 ([18]). For any nonexceptional free factor system A of FN ,
ϕ ∈ Out(FN ; A) acts as a hyperbolic isometry on FF(FN ; A) if and only if
ϕ is fully irreducible with respect to A@ {[FN]}.
Remark6.5. Analternativeproof ofTheorem6.4 is givenbyGuirardel
andHorbez in [9] using thedescription of the boundary of the relative
free factor complex. Further, with a slight modification of the defi-
nition of the relative free factor complex, both Handel and Mosher
and Guirardel and Horbez can additionally prove that the theorem
holds for the only remainingmulti-edge configurationwhich iswhen
A� {[A1], [A2], [A3]} and FN � A1 ∗A2 ∗A3. Yet another proof of The-
orem 6.4 when the cofactor is non-trivial is given by Radhika Gupta
in [11] using dynamics on relative outer space and relative currents.
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We are now ready to prove our application:

Theorem 6.6. For each finitely generated subgroup H < IAN(Z/3) <
Out(FN) and each maximal H–invariant filtration by free factor systems
∅ � F0 @ F1 @ · · · @ Fm � {[FN]}, there is an element ϕ ∈ H such that
for each i � 1, . . . ,m such that Fi−1 @ Fi is a multi-edge extension, ϕ is
irreducible with respect to Fi−1 @ Fi .

Proof. Let I be the subset of indices i such that Fi−1 @ Fi is a multi-
edge extension.

Given i ∈ I, since H < IAN(Z/3), each component of Fi−1 and Fi
is H–invariant [15, Lemma 4.2]. Moreover, by the argument at the
beginning of Section 2.1 in [17], since H is irreducible with respect
to Fi−1 @ Fi (this follows from maximality of the filtration) there is
precisely one component [Bi] ∈ Fi that is not a component of Fi−1.
Let Âi be themaximal subset ofFi−1 such that Âi @ {[Bi]}. Notice that
this extension is again multi-edge, indeed rk(Bi) − rk(Âi) � rk(Fi) −
rk(Fi−1). The system Âi can be represented by {[Ai ,1], . . . , [Ai ,Ki ]}
where Ai ,k < Bi for each k. Let Ai be the free factor system in the
subgroupBi consisting of the conjugacy classes inBi of the subgroups
Ai ,k . Then a given ϕ ∈ H is irreducible with respect to Âi @ {[Bi]},
equivalently Fi−1 @ Fi as the remaining components are the same, if
and only if the restriction ϕ |Bi∈ Out(Bi ; Ai) is irreducible relative to
Ai .
For i ∈ I, let Xi � FF(Bi ; Ai) and consider the action homomor-

phism ρi : H→ Isom(Xi) defined by ρi(ϕ) � ϕ |Bi . These spaces
are δ–hyperbolic for some δ by Theorem 6.3 and by the above dis-
cussion and Theorem 6.4, ρi(ϕ) is a hyperbolic isometry if ϕ ∈ H is
irreducible with respect to Fi−1 @ Fi . If ρi(ϕ) is not irreducible with
respect to Fi−1 @ Fi , then ρi(ϕ) fixes a point in Xi . By Theorem 6.1,
for each i ∈ I, there exist some ϕi ∈ Hthat is irreducible with respect
to Fi−1 @ Fi and hence ρi(ϕi) is a hyperbolic isometry.
We are now in the model situation of Theorem 5.1. We conclude

that there is a ϕ ∈ H such that ρi(ϕ) is a hyperbolic isometry for all
i ∈ I. By the above discussion, this means that ϕ is (fully) irreducible
with respect to Fi−1 @ Fi for each i ∈ I as desired. �
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