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Abstract. We prove that, aside from the obvious exceptions, the mapping class
group of a compact orientable surface is not abstractly commensurable with any
right-angled Artin group. Our argument applies to various subgroups of the
mapping class group—the subgroups generated by powers of Dehn twists and
the terms of the Johnson filtration—and additionally to the outer automorphism
group of a free group and to certain linear groups.

There are many analogies and interconnections between the theories of right-
angled Artin groups on one hand and mapping class groups on the other hand. For
instance, by the work of Crisp and Wiest [13], the work of Koberda [27], and the
work of the first two authors with Mangahas [12], there is an abundance of injective
homomorphisms from right-angled Artin groups to mapping class groups. Also, the
last two authors proved [30] that any two elements of the pure braid group either
generate a free group or a free abelian group—a property shared by all right-angled
Artin groups [4, Theorem 1.2]. We are thus led to ask to what extent mapping class
groups are the same as right-angled Artin groups.

It is straightforward to see that most mapping class groups are not isomorphic to
right-angled Artin groups, for instance because right-angled Artin groups are torsion
free. On the other hand, mapping class groups have finite-index subgroups that are
torsion free, and so this leaves open the possibility that mapping class groups are
abstractly commensurable to right-angled Artin groups, that is, that they have
isomorphic finite-index subgroups. We prove that, aside from a small number of
exceptions, this is not the case. We also extend this result to several classes of
groups related to mapping class groups. We start by recalling some definitions.

To a finite graph Γ, we can associate a right-angled Artin group: this is the group
with one generator for each vertex of Γ, and one defining relator for each edge,
namely, the commutator of the two generators corresponding to the endpoints.

Let Sg,n denote a closed, connected, orientable surface of genus g with n marked
points. The mapping class group Mod(Sg,n) is the group of homotopy classes of
orientation-preserving homeomorphisms of Sg,n preserving the set of marked points.

As discussed in Koberda’s paper [27, Theorem 1.5], no finite-index subgroup of
Mod(Sg,n) injects into a right-angled Artin group if g ≥ 2 and (g, n) 6= (2, 0); see
also [24]. In particular, such mapping class groups are not abstractly commensurable
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with right-angled Artin groups. The last statement has a quick proof: for a right-
angled Artin group, the virtual cohomological dimension is equal to the maximal
rank of a free abelian subgroup, while for mapping class groups these numbers—
which are invariant under passage to finite-index subgroups—are equal if and only
if g = 0, g = 1, or (g, n) = (2, 0); see [21, Theorem 4.1] and [8, Theorem A].

As for the other mapping class groups, the first two authors proved with Man-
gahas that Mod(S2,0) is not abstractly commensurable with any right-angled Artin
group [12, Proposition 7.2] and explained how to apply their method to the case
of Mod(S0,n) with n ≥ 6. Our first theorem extends these results to the remaining
groups Mod(Sg,n), while at the same time giving a uniform argument for all cases.

Theorem 1. Let g, n ≥ 0 and assume that 3g+n ≥ 5. No right-angled Artin group
is abstractly commensurable with Mod(Sg,n).

To prove Theorem 1, we consider a third invariant of the abstract commensura-
bility class of a group G, namely, the abstract commensurator Comm(G). This is
the group of all isomorphisms between finite-index subgroups of G, up to restriction;
see [23, Section 5]. In what follows, we say that a group is virtually abelian if it has
an abelian subgroup of finite index.

Main Lemma. If G is a group that is not virtually abelian and where Comm(G)
does not contain (Z/2Z)k for arbitrarily large k, then G is not abstractly commen-
surable with a right-angled Artin group.

Proof. It is enough to show that if A is a non-abelian right-angled Artin group, then
Comm(A) contains (Z/2Z)k for arbitrarily large k. The proof of this fact consists
of two observations.

The first observation is that if the defining graph Γ for a non-abelian right-angled
Artin group A has k vertices, then Comm(A) contains a subgroup isomorphic to
(Z/2Z)k. The generators are the abstract commensurators obtained by inverting
the elements of A corresponding to the vertices of Γ (each is a nontrivial element
of Comm(A) since every finite-index subgroup of A contains some power of this
generator and no power of a generator is equal to its inverse).

The second observation is that (as A is not abelian) A contains a finite-index
subgroup A′ that is a right-angled Artin group whose defining graph has arbitrarily
many vertices. Since Comm(A) ∼= Comm(A′), the result follows.

To prove the second observation, we choose a vertex v of Γ for which the star
of v is not all of Γ. Such a vertex exists since A is not abelian. Consider the
homomorphism A → Z/mZ obtained by sending the generator of A corresponding
to v to 1 and the generators corresponding to all other vertices to 0. The kernel has
finite index in A and is a right-angled Artin group whose defining graph is obtained
by taking m copies of Γ and gluing along the m copies of the star of v; see [7, Section
11] and [26, Corollary 5]. Since the star of v is not all of Γ, the new graph has more
than m vertices. �

We can deduce Theorem 1 directly from the Main Lemma, as follows. First,
Mod(Sg,n) is not virtually abelian, for instance because nonzero powers of Dehn
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twists about two curves with nonzero geometric intersection fail to commute (and
we can choose these powers so that they lie in any given subgroup of finite index) [19,
Section 3.3]. Also, for most of the surfaces covered by Theorem 1, Ivanov [23, Theo-
rem 5] and Korkmaz [28, Theorem 3] showed that Comm(Mod(Sg,n)) is isomorphic
to the extended mapping class group Mod±(Sg,n), the group of homotopy classes of
all (not-necessarily-orientation-preserving) homeomorphisms of Sg,n. There are two
exceptions: Comm(Mod(S1,2)) ∼= Mod±(S0,5) and Comm(Mod(S2,0)) ∼= Mod±(S0,6);
see [6, Proposition 7] and [22, Theorem 1.2]. It follows from Kerckhoff’s solution to
the Nielsen realization problem [25] that Mod±(Sg,n) does not contain finite sub-
groups of arbitrary large cardinality; see, e.g., [19, Section 7.2]. Thus, Mod(Sg,n)
satisfies both hypotheses of the Main Lemma and Theorem 1 follows immediately.

Our proof of the Main Lemma can be combined with a theorem of Bartholdi
and Bogopolski [3, Theorem 2.8] to prove that Comm(A) is not finitely generated,
thus giving a different (but similar) proof that Comm(A) is not isomorphic to any
Mod±(S).

The assumptions in Theorem 1 are in fact necessary, as Mod(S1,0) ∼= Mod(S1,1) ∼=
SL2(Z) and Mod(S0,4) ∼= PSL2(Z) n (Z/2Z × Z/2Z) are commensurable with the
free group F2 and for n ≤ 3 the group Mod(S0,n) is finite, hence abstractly com-
mensurable with the trivial right-angled Artin group.

Finally, the (Z/2Z)k subgroups of Comm(A) we construct further embed into
the quasi-isometry group of A, and so using the theorem of Behrstock, Kleiner,
Minsky, and Mosher that the quasi-isometry group of Mod(Sg,n) is again an extended
mapping class group [5, Theorem 1.1], we can conclude the following strengthening
of Theorem 1.

Theorem 2. Let g, n ≥ 0 and assume that 3g+n ≥ 5. No right-angled Artin group
is quasi-isometric to Mod(Sg,n).

Mapping class groups of surfaces with boundary. Let Sb
g,n denote the sur-

face obtained from Sg,n by removing the interiors of b disks, disjoint from each
other and the marked points; we denote Sb

g,0 by Sb
g and S0

g,0 by Sg. The mapping
class group Mod(Sb

g,n) is the group of homotopy classes of orientation-preserving
homeomorphisms of Sb

g,n that restrict to the identity on the boundary.

Theorem 3. Let g, n, b ≥ 0 and assume that 3g+ n+ b ≥ 5. No right-angled Artin
group is abstractly commensurable with Mod(Sb

g,n).

As the braid group on n strands is isomorphic to Mod(S1
0,n), Theorem 3 in par-

ticular implies that the braid group (or pure braid group) on n ≥ 4 strands is not
abstractly commensurable with any right-angled Artin group.

When b > 0, the virtual cohomological dimension of Mod(Sb
g,n) and the maximal

rank of an abelian subgroup of Mod(Sb
g,n) are equal if and only if g ∈ {0, 1} [21,

Theorem 4.1], and so to prove Theorem 3 it suffices to consider these two values of
g. A fact special to these two cases is that Mod(Sb

g,n) is abstractly commensurable
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with the direct product Mod(Sg,n+b)× Zb; see Theorem 10 below. Theorem 3 thus
follows from the next lemma and Theorem 1.

Lemma 4. If a group G is abstractly commensurable with G′ × Zn for some group
G and some n ≥ 0, then G is abstractly commensurable with a right-angled Artin
group if and only if G′ is abstractly commensurable with a right-angled Artin group.

Proof. If a right-angled Artin group A is abstractly commensurable with G, it is then
abstractly commensurable with G′ × Zn. From this it follows that A is isomorphic
to A′ × Zn for some right-angled Artin group A′ (use [32, Section III]) and A′ is
abstractly commensurable with G′ (cf. [29, Lemma 2.2]). The other direction is
trivial since a direct product of right-angled Artin groups is again a right-angled
Artin group. �

The genus zero and one cases of Theorem 3 can also be proven by directly applying
the Main Lemma, as in the proof of Theorem 1. The group Comm(Mod(S1

0,n)) was
computed by the last two authors [29] and a similar argument using Theorem 10
below and Section 3 of [29] shows that

Comm(Mod(Sb
g,n)) ∼= Comm(Mod(Sg,n+b)) n (GLb(Q) n (Qb)∞)

for g ∈ {0, 1} and 3g+n+b ≥ 5. Again, these groups do not contain finite subgroups
of arbitrarily large cardinality.

Subgroups of the mapping class group. We will apply our Main Lemma to
show that several other classes of groups are not abstractly commensurable with
right-angled Artin groups: first for certain subgroups of the mapping class group,
and then for the outer automorphism group of a free group and certain linear groups.

Let Td(Sg) denote the subgroup of Mod(Sg) generated by the dth powers of all
Dehn twists. This group has infinite index in Mod(Sg) for d ≥ 11 and g ≥ 2 [20].
It has been conjectured that Td(Sg) is a right-angled Artin group for d large [20].
However, Ivanov’s proof that Comm(Mod(Sg)) ∼= Mod±(Sg) (see [23, Theorem 5])
carries over to show that Comm(Td(Sg)) ∼= Mod±(Sg) for g ≥ 3; see [1, Corollary
2] for an alternate argument. As Td(Sg) is not virtually abelian, we conclude the
following.

Theorem 5. Let g ≥ 3 and d ≥ 1. The group Td(Sg) is not abstractly commensu-
rable with any right-angled Artin group.

Let π denote π1(Sg), and let πk denote the kth term of its lower central se-
ries: π1 = π and πk+1 = [π, πk]. The Johnson filtration of Mod(Sg) is the nested
sequence of groups (Nk(Sg)) where Nk(Sg) is the kernel of the natural homomor-
phism Mod(Sg) → Out(π/πk+1). The intersection of the Nk(Sg) is trivial. The
groups N1(Sg) and N2(Sg) are also known as the Torelli group and Johnson kernel
of Sg. For g large enough, the abstract commensurators of these groups are all
known to be isomorphic to Mod±(Sg) [18, Theorem 7] [10, Main Theorem 1] [11].

Theorem 6. Let k ≥ 1. Let g ≥ 3 if k ≤ 3 and let g ≥ 4 if k > 3. No right-angled
Artin group is abstractly commensurable with Nk(Sg).
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Outer automorphism groups of right-angled Artin groups. For g ≥ 1, the
group Mod±(Sg) is isomorphic to Out(π1(Sg)); this is the Dehn–Nielsen–Baer the-
orem [19, Theorem 8.1]. As π1(S1) ∼= Z2 and as π1(Sb

g) is a free group for b > 0, we
can obtain analogs of the mapping class group by considering groups of the form
Out(A) where A is a right-angled Artin group. By results of Davis–Januszkiewicz
[15] and Taylor [34], there are many embeddings of right-angled Artin groups into
Out(A) where A is Zn or Fn, just like in the mapping class group case.

By the combined work of Borel [9] and Margulis [31], the abstract commensurator
of GLn(Z) ∼= Out(Zn) is PGLn(Q) o Z/2Z for n ≥ 3; see e.g. [33, Section 7.3] for
an exposition of these ideas. Since PGLn(Q) does not contain arbitrarily large
subgroups of the form (Z/2Z)k and since GLn(Z) is not virtually abelian, we obtain
the following further consequence of our Main Lemma.

Theorem 7. Let n ≥ 3. No right-angled Artin group is abstractly commensurable
with Out(Zn) ∼= GLn(Z).

Wortman [35] has pointed out that our Main Lemma also applies with GLn(Z)
replaced by any lattice in a semisimple Lie group not locally isomorphic to SL2(R).
Indeed, for any such lattice G, Mostow–Prasad–Margulis superrigidity implies that
Comm(G) is a subgroup of some GLn(C). From the theory of Jordan canonical
forms (in particular the fact that commuting matrices can be simultaneously put
into normal form), we know that GLn(C) contains subgroups isomorphic to (Z/2Z)k

only for k ≤ n. In particular, we can deduce the theorem of Koberda that for k ≥ 3
no right-angled Artin group is abstractly commensurable with a lattice in SO(k, 1)
[27, Theorem 1.14]. Additionally, Studenmund [33] has shown that the abstract
commensurators of many lattices with nontrivial solvable radicals (e.g. SLn(Z)nZn)
are linear, so our argument applies to these lattices as well.

Farb and Handel proved that Comm(Out(Fn)) is isomorphic to Out(Fn) when
n ≥ 4 (it is not known whether Comm(Out(F3)) ∼= Out(F3) or not) [17]. A finite
subgroup of Out(Fn) can be identified with the symmetries of some fixed metric
graph of rank n [14, Theorem 2.1] [36], and so there is a bound on the cardinality
of such subgroups that depends only on n. Since Out(Fn) is not virtually abelian,
our Main Lemma also implies the following.

Theorem 8. Let n ≥ 4. No right-angled Artin group is abstractly commensurable
with Out(Fn).

Theorems 7 and 8 tell us that (in most cases) the outer automorphism groups of
the right-angled Artin groups Zn and Fn are not commensurable with right-angled
Artin groups. We also know that Out(Z2) ∼= Out(F2) ∼= GL2(Z) is commensurable
with F2, and that the outer automorphism group of the right-angled Artin group
associated to the linear graph with four vertices is ((Z/2Z)n (Z/2Z)4)nZ4 (cf. [16,
Proposition 2.15]), which is abstractly commensurable with Z4. We are therefore
led to the following question.

Question 9. For which right-angled Artin groups A is Out(A) abstractly commen-
surable with a right-angled Artin group?
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Appendix. Virtual splitting for low-genus mapping class groups

In this appendix we prove a fact used in our proof of Theorem 3. For the state-
ment, we define the level two subgroup Mod(Sb

g,n)[2] of Mod(Sb
g,n) as the finite-index

subgroup consisting of all elements that act trivially on the mod two homology of the
surface obtained from Sb

g,n by removing the marked points. Note that when g = 0
the group Mod(Sb

0,n)[2] is the same as the pure mapping class group; in particular
Mod(S1

0,n)[2] is isomorphic to the pure braid group on n strands.

Theorem 10. Let g ∈ {0, 1}, and assume 3g + n+ b ≥ 3. We have

Mod(Sb
g,n)[2] ∼= Mod(Sg,n+b)[2]× Zb.

Proof. It suffices to show that Mod(Sb
g,n)[2] splits as a direct product over its cen-

ter, the free abelian group generated by the Dehn twists about the b boundary
components of Sb

g,n. The theorem then follows from the fact that the natural inclu-
sion Sb

g,n → Sg,n+b induces a well-defined surjective map of level two mapping class
groups, and that the kernel of this map is the center [19, Proposition 3.19].

First we deal with the case g = 1. The group Mod(S1
1)[2] is isomorphic to the

pure braid group on three strands (combine [19, Section 9.4.1] with [2]). It is well-
known that the latter splits over its infinite cyclic center [19, Section 9.3], and so we
are done in this case. Denote by s a retraction Mod(S1

1)[2] → Z(Mod(S1
1)[2]) that

defines the splitting.
Let fi : Mod(Sb

1,n)[2]→ Mod(S1
1)[2] be the homomorphism obtained by forgetting

the n marked points and by capping each boundary component of Sb
1,n—except

for the ith—with a disk. Also, let hi : Z(Mod(S1
1)[2]) → Mod(Sb

1,n)[2] be the
homomorphism that maps the Dehn twist about the boundary of S1

1 to the Dehn
twist about the ith boundary component of Sb

1,n. The product of the maps hi ◦s◦fi

is the desired retraction Mod(Sb
1,n)[2]→ Z(Mod(Sb

1,n)[2]).
The genus zero version is nearly identical. The role of Mod(S1

1)[2] is played by
Mod(S1

0,2)[2] ∼= Z. The only essential difference in this case is that there are many
choices of homomorphism Mod(Sb

0,n)[2]→ Mod(S1
0,2)[2] available for each coordinate

of the splitting. �

In contrast to Theorem 10, it is known that Mod(S1
g ) does not have a finite-index

subgroup that splits over its center when g ≥ 2; see [19, Proposition 5.10].

Acknowledgments. We would like to thank Jason Behrstock, Matt Day, Benson
Farb, Thomas Koberda, Daniel Studenmund, Richard Wade, Kevin Wortman, and
the referee for helpful comments and conversations.

References

[1] Javier Aramayona and Juan Souto. A remark on homomorphisms from right-angled artin
groups to mapping class groups, 2013.

[2] V. I. Arnol’d. A remark on the branching of hyperelliptic integrals as functions of the param-
eters. Funkcional. Anal. i Priložen., 2(3):1–3, 1968.
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