
PSEUDO-ISOMETRIC SURGERY

MATT CLAY AND JOSH THOMPSON

Abstract. We introduce a type of surgery on metric spaces. This
surgery, in some sense, seeks to replace a subspace S of a metric
space X with another metric space T via a function f : S → T .
When T is a discrete space, this amounts to collapsing the subspace
according to the function. This surgery results in a new metric
space we denote X̂f and there is a natural function F : X → X̂f

induced from f . Our primary interest is investigating if properties
of the original function f are inherited by the induced function F .
We show that if f is a pseudo-isometry then so is F . However, for a
quasi-isometry, a very natural generalization of a pseudo-isometry
that is prevalent in geometric group theory, such a result does not
hold.

1. Introduction

The idea of removing a subset from a space and replacing it with a mod-
i�ed version is one the most basic transformations of mathematics. For ex-
ample the Möbius band, often obtained as the result of a cut/twist/reglue
operation can also arise from a remove/alter/replace operation on the an-
nulus, see Figure 1. Such transformations are used to produce new spaces
that are simulatneously di�erent from, yet similar to, the original.

In 1910 Max Dehn introduced a procedure in three dimensions, later
referred to as "surgery" by Milnor and Thom [1] and now known as Dehn

Surgery. In it, one �rst removes a solid torus T from a 3�manifold and
then `sews it back di�erently', see [2] and [3] for details. There are many
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f : S → T is a pseudo-isometry, then the natural map F : X → X̂f is a

pseudo-isometry as well.

The de�nition of X̂f appears in Section 2. The proof of Theorem 1.1
appears in Section 3.

The metric on X̂f , obtained by variation of the quoteint metric space
construction (see e.g., [9, Chapter I.5]), is de�ned via certain alternating
sequences of pairs of points in X and T taking into account the function
f . We call such sequences admissible and the length of such is the sum
of the distances for each pair (De�nition 2.3). The main technical step
to prove Theorem 1.1 is Lemma 2.5 where we give a lower bound on the
length of an admissible sequence in terms of the distance in X between its
endpoints. It is in this lemma that we need to restrict to pseudo-isometries
as opposed to quasi-isometries to control the amount of additive error.

One example that is covered by Theorem 1.1 is the map F : R → R
that collapses each interval of the form [2n, 2n+1] to a point. This is the
example discussed above. For this example we have that S = {[2n, 2n+1] |
n ∈ Z}, T = Z and f(s) = ⌊ s

2⌋. In this case as we mentioned above, the
surgered space is isometric to R.

We present some examples in Section 4. First, An application of The-
orem 1.1 to regular trees is given in Example 4.1. Next, in Example 4.2
we show the "pseudo-" assumption is necessary in the following sense:
When the gluing map is weakened to that of a quasi-isometry the natural
map to the surgered space fails to even be a quasi-isometry. It remains
open under what conditions does a quasi-isometric gluing map yield a
quasi-isometric natural map between the original and the surgered space.

2. Construction of the surgered space.

In this Section we de�ne the surgered space X̂f using a notion of ad-
missible sequences (De�nition 2.3) which ties together the spaces X, S,
and T via the pseudo-isometry f : S → T . We also present a few proper-
ties of admissible sequences that form the essential parts of the proof of
Theorem 1.1.

To begin, we state the de�nition of a pseudo-isometry.

De�nition 2.1. Let (S, dS) and (T, dT ) be metric spaces. A map f : S →
T is a pseudo-isometry if there exist contants K ≥ 1 and C ≥ 0 such that
the following hold.

(1) For all x0, x1 ∈ S, we have:

1

K
dS(x0, x1)− C ≤ dT (f(x0), f(x1)) ≤ KdS(x0, x1).

(2) For all y ∈ T , there is an x ∈ S with dT (f(x), y) ≤ C.
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Remark 2.2. If we allow the upper bound to also have an additive con-
stant, i.e.,

dT (f(x0), f(x1)) ≤ KdS(x0, x1) + C

then the map is called a quasi-isometry.

A metric on the surgered space will be de�ned via sequences of pairs
of points that (potentially) intersect the sets where the surgery occurs,
called admissible sequences. In what follows X and T are metric spaces
with metrics dX and dT respectively, and S ⊆ X is a subspace considered
as a metric space with the metric induced from X. We also have a pseudo-
isometry f : S → T with constants K and C as in De�nition 2.1.

De�nition 2.3. An admissible sequence is a sequence of pairs of the
form:

(2.1) γ : (x0, y1), (u1, v1), (x1, y2), . . . , (uk, vk), (xk, yk+1)

where:

(1) x0, yk+1 ∈ X,
(2) xi, yi ∈ S for i = 1, . . . , k,
(3) ui, vi ∈ T for i = 1, . . . , k, and
(4) ui = f(yi) and vi = f(xi) for i = 1, . . . , k.

We allow for the possibility that xi = yi+1 or ui = vi for each i = 0, . . . , k.
Moreover, we allow for the possibility that the pair (x0, y1) is omitted.
In this case, the only restriction on u1 is that it lies in T . Likewise, we
allow for the possibility that the pair (xk, yk+1) is omitted. In this case,
the only restriction on vk is that it lies in T . We say the sequence is from
x0 to yk+1, modifying to use u1 or vk accordingly if the pair (x0, y1) or
(xk, yk+1) respectively is omitted. A schematic for an admissible sequence
appears in Figure 2.

De�nition 2.4. The length of an admissible sequence γ as de�ned in (2.1)
is:

(2.2) ℓ(γ) = dX(x0, y1) +
k∑

i=1

(
dT (ui, vi) + dX(xi, yi+1)

)
.

The next lemma shows that the length of an admissible sequence be-
tween points x and y in X is bounded below by a linear function of the
distance in X between x and y. This lemma is essential to the proof
of Theorem 1.1 as it forms the basis of the proving the pseudo-isometry
inequalities.

Lemma 2.5. Let γ be an admissible sequence from x to y, where x, y ∈ X.

Then

dX(x, y) ≤ K2ℓ(γ) +KC.
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(2.8). Finally, (2.9) follows from the de�nition of the length of γ.

dX(x, y) ≤ dX(x0, y1) + dX(y1, xk) + dX(xk, yk+1)

(2.3)

≤ dX(x0, y1) + (KdT (u1, vk) +KC) + dX(xk, yk+1)(2.4)

≤ dX(x0, y1) +K

(
k−1∑
i=1

(
dT (ui, vi) + dT (vi, ui+1)

)
+ dT (uk, vk)

)
+ dX(xk, yk+1) +KC(2.5)

= dX(x0, y1) +K

(
k∑

i=1

dT (ui, vi) +
k−1∑
i=1

dT (vi, ui+1)

)
+ dX(xk, yk+1) +KC(2.6)

≤ dX(x0, y1) +K

(
k∑

i=1

dT (ui, vi) +K
k−1∑
i=1

dX(xi, yi+1)

)
+ dX(xk, yk+1) +KC(2.7)

≤ K2

(
dX(x0, y1) +

k∑
i=1

(
dT (ui, vi) + dX(xi, yi+1)

))
+KC(2.8)

≤ K2ℓ(γ) +KC.(2.9)

This completes the proof of the lemma. □

Remark 2.6. Note that in the proof above it is necessary that f is a
pseudo-isometry and not merely a quasi-isometry. In passing from (2.6)
to (2.7), the dX summation has no additive term, e�ectively allowing us
to bound the lengths with a multiplicative constant. Had f been just a
quasi-isometry this summation would induce k−1 additive constants. The
number of such constants re�ects the number of steps in the admissible
sequence which is not bounded by the distance. This makes it impossible
to bound the distance between x and y in terms of the length of an
admissible sequence between them.

As we complete the construction of the surgered space let us recall the
orginal space X, a subset S ⊂ X and a pseudo-isometry f : S → T . We
�rst glue S to T forming the space X ′:

X ′ = X ∪ T
/
s ∼ f(s), ∀s ∈ S.

In other words, points in X ′ are equivalence classes. Let j : X ∪ T →
X ′ the quotient map that takes a point to its equivalence class. These
equivalence classes are one of three types:
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(1) If x ∈ X − S, then j(x) = {x}, a singleton,
(2) If x ∈ S, then j(x) = {y ∈ S | f(y) = f(x)} ∪ {f(x)}, or
(3) If u ∈ T , then j(u) = {y ∈ S | f(y) = u} ∪ {u}.

Note, the �rst set in the union for type (3) may be empty.
The in�mum of lengths of admissible sequences induces a pseudo-metric

pX′ : X ′ ×X ′ → R de�ned by:

pX′(x′, y′) = inf{ℓ(γ) | γ}
where γ is an admissible sequence from x to y where j(x) = x′ and j(y) =

y′. We de�ne (X̂f , dX̂f
) as the metric space induced by identifying points

in (X ′, pX′) that have pseudo-distance equal to 0. If the corresponding

quotient map is q : X ′ → X̂f we have

dX̂f
(x̂, ŷ) = inf{pX′(x′, y′) | q(x′) = x̂ and q(y′) = ŷ}.

There is an induced map F : X → X̂f given by the composition:

F : X
j→X ′ q→X̂f .

Summarizing the above, we have that dX̂f
(x̂, ŷ) is the in�mum of the set

of lengths of admissible sequences from a point in F−1(x̂) to a point in
F−1(ŷ). The map F can be thought of as a kind of surgery on X, in
which a subset S is exised and replaced by a set T .

We remark here that an immediate consequence of this de�nition is
that

dX̂f
(q(x′), q(y′)) ≤ pX′(x′, y′) ∀ x′, y′ ∈ X ′.

This will be used in the proof of Theorem 1.1.
The lemma below indicates that if this surgery glues two points to-

gether then the two points were a bounded distance apart in the original
metric.

Lemma 2.7. If x, y ∈ X and F (x) = F (y), then dX(x, y) ≤ 3KC.

Proof. Fix points x, y ∈ X and suppose that F (x) = F (y) = x̂. Let x′ =

j(x) and y′ = j(y). By the construction of X̂f , we have that for any two
points in q−1(x̂) the pseudo-distance is equal to 0. Hence pX′(x′, y′) = 0.
Therefore, for any ϵ > 0, there must be points x0, y0 ∈ X ∪ T with
j(x0) = x′, j(y0) = y′, and an admissible sequence γ from x0 to y0 of
length less than ϵ.

By the de�nition of j : X ∪ T → X ′ we can assume that x0 and y0 lie
in X. Indeed, if x0 ∈ T then we must have x0 = f(s0) for some s0 as j
is injective on T − f(S). We could then prepend the sequence γ by the
ordered pair (s0, s0) to get a new sequence with the same properties that
starts in X. Likewise if y0 ∈ T .
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Since j(x) = j(x0), we must have that f(x) = f(x0) and hence

dX(x, x0) ≤ KC

since f is a pseudo-isometry. Likewise we have that dX(y, y0) ≤ KC.
Using Lemma 2.5, we have that dX(x0, y0) ≤ K2ϵ + KC. Combining
these with the triangle inequality, we �nd:

dX(x, y) ≤ dX(x, x0) + dX(x0, y0) + dX(y0, y) ≤ KC +K2ϵ+KC +KC.

As this holds for all ϵ > 0, we have dX(x, y) ≤ 3KC as claimed. □

3. Proof of Main Theorem

We can now prove the main theorem. It is restated here for conve-
nience.

Theorem 1.1. Suppose (X, dX) and (T, dT ) are metric spaces and con-

sider a subset S ⊂ X as a metric space with metric induced from X. If

f : S → T is a pseudo-isometry, then the natural map F : X → X̂f is a

pseudo-isometry as well.

Proof. Let X, S, T be as in the statement of the theorem and f : S → T
a pseudo-isometry with constants K ≥ 1 and C > 0 as in De�nition 2.1.

Let X ′ and X̂f be as de�ned in Section 2 and F : X → X̂f the map
induced by the composition:

F : X
j→X ′ q→X̂f .

First we show F is coarsely surjective. By construction, for any ŷ ∈
X̂f − F (X) there is some t ∈ T such that ŷ = q(j(t)). As f : S → T
is coarsely surjective, there is an s ∈ S where dT (f(s), t) ≤ C. The
admissible sequence (s, s), (f(s), t) from s to t has length at most C.
Therefore pX′(j(s), j(t)) ≤ C and hence

dX̂f
(F (s), ŷ) = dX̂f

(q(j(s)), q(j(t))) ≤ pX′(j(s), j(t)) ≤ C

as well.
Next we demonstrate an upper bound on dX̂f

(F (x), F (y)). Given

points x, y ∈ X, for the admissible sequence γ : (x, y) we �nd that
pX′(j(x), j(y)) ≤ ℓ(γ) = dX(x, y). Therefore

dX̂f
(F (x), F (y)) = dX̂f

(q(j(x)), q(j(y))) ≤ pX′(j(x), j(y)) ≤ dX(x, y).

Finally, we demonstrate a lower bound on dX̂f
(F (x), F (y)). Let ϵ > 0.

Given points x, y ∈ X, we �x points x0, y0 ∈ X where F (x) = F (x0),
F (y) = F (y0), and for which there exists an admissible sequence γ from
x0 to y0 of length less than dX̂f

(F (x), F (y))+ϵ. We note that such points
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and admissible sequence exist by an argument similar to the one presented
in Lemma 2.7.

By Lemmas 2.5 and 2.7 we now have that:

dX(x, y) ≤ dX(x, x0) + dX(x0, y0) + dX(y0, y)

≤ 3KC +K2ℓ(γ) +KC + 3KC

≤ K2
(
dX̂f

(F (x), F (y)) + ϵ
)
+ 7KC.

As this holds for all ϵ > 0, rearranging we �nd that:

1

K2
dX(x, y)− 7C

K
≤ dX̂f

(F (x), F (y)). □

4. Examples

In this section we present two examples. The �rst is an application of
Theorem 1.1 where we show that the regular tree of degree 4 is pseudo-
isometric to the regular tree of degree 6 (Example 4.1). The second exam-
ple shows that the �pseudo-isometry� assumption in Theorem 1.1 cannot
be weakened to �quasi-isometry,� even if the conclusion is also weakened
(Example 4.2).

Example 4.1. Let X be the regular tree of degree 4 where every edge
is isometric to the unit interval [0, 1]. We consider the subset S ⊂ X
consisting of every other horizontal edge, including its incident vertices,
as indicated in Figure 4. Speci�cally, we can identify X as the Cayley
graph of the free group of rank 2, F2, corresponding to a basis {g1, g2}
(see Chapter 2 of [8] for details). Then there are two orbits of edges the
corresponding to the set of horizontal edges and the set of vertical edges
respectively in Figure 4. Let e1 be the edge whose originating vertex is
the identity and whose terminal vertex is g1. Then the set S corresponds
to the set of edges of the form we1 where the terminal syllable of w is an
even power of g1. In other words, w ∈ F2 is of the form:

w = w′g2p1

where w′ ∈ F2 is either trivial or ends in g±1
2 and p ∈ Z.

Let T ⊂ X be the set of midpoints of the edges in S, considered as a
metric space using the metric from X. The map f : S → T that sends
each edge in S to its midpoint is a pseudo-isometry where K = 2 and

C = 1. As shown in Figure 4, the surgered space X̂f is the regular
tree of degree 6. This example can be generalized to construct explicit
pseudo-isometries between regular trees with other degrees as well.
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These sequences are related by the equations ai = bi−1 + (1/2)
i
and bi =

ai + 1. We consider the subset S ⊂ X given by:

S =
∞⋃
i=0

[ai, bi].

See Figure 5.

X :
a0 b0

a1 b1

a2 b2

a3 b3

a4 b4

Figure 5. The closed positive ray with the subset S
(shown in red). The surgered space is the half-open in-
terval [0, 1) ⊂ R.

Let T ⊂ X be the set of all ai, considered as a metric space using the
metric fromX. The map f : S → T that sends each interval [ai, bi] to ai is
a (continuous) quasi-isometry with K = 1, C = 2, but it is not a pseudo-
isometry for any choice of constants K and C. Indeed, dS(bi−1, ai) =

(1/2)
i → 0 as i → ∞ while dT (f(bi−1), f(ai)) = dT (ai−1, ai) ≥ 1 for all i.

In this case, the surgered space X̂f is isometric to the half-open interval
[0, 1) ⊂ R. In particular, X is not pseudo-isometric (nor quasi-isometric)

to X̂f .
The failure of this example is directly tied to the failure for Lemma 2.5

in this setting. There are admissible sequences with bounded length con-
necting points arbitrarily far apart in X. See Remark 2.6.

This example shows the necessity of the hypothesis of a pseudo-isometry
in the statement of Theorem 1.1. It would be interesting to �nd robust
conditions on S ⊂ X so that if f : S → T is a quasi-isometry, then the

surgered space X̂f is quasi-isometric to X.
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