PSEUDO-ISOMETRIC SURGERY

MATT CLAY AND JOSH THOMPSON

ABsTracT. We introduce a type of surgery on metric spaces. This
surgery, in some sense, seeks to replace a subspace S of a metric
space X with another metric space T via a function f: S — T.
When T is a discrete space, this amounts to collapsing the subspace
according to the function. This surgery results in a new metric
space we denote Xf and there is a natural function F': X — )A(f
induced from f. Our primary interest is investigating if properties
of the original function f are inherited by the induced function F.
We show that if f is a pseudo-isometry then so is F'. However, for a
quasi-isometry, a very natural generalization of a pseudo-isometry
that is prevalent in geometric group theory, such a result does not
hold.

1. INTRODUCTION

The idea of removing a subset from a space and replacing it with a mod-
ified version is one the most basic transformations of mathematics. For ex-
ample the Mdbius band, often obtained as the result of a cut/twist /reglue
operation can also arise from a remove/alter /replace operation on the an-
nulus, see Figure 1. Such transformations are used to produce new spaces
that are simulatneously different from, yet similar to, the original.

In 1910 Max Dehn introduced a procedure in three dimensions, later
referred to as "surgery" by Milnor and Thom [1] and now known as Dehn
Surgery. In it, one first removes a solid torus T from a 3—manifold and
then ‘sews it back differently’, see [2] and [3] for details. There are many
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Ficure 1. The Mobius band is obtained from a re-
move/eurgery on the annulus.

different ways to sew the solid torus back in. Specifically, note that simple
closed curves on the torus can be identified with ordered pairs of relatively
prime integers (m,n) corresponding to how the curve winds around the
surface. Once the solid torus T is removed we can glue it back in so that
the (m,n) curve is sewn to the curve that previously matched the (1,0)
curve. Each different choice of m and n results in a potentially different
3-manifold. In fact, every closed, orientable, connected 3-manifold can
be obtained by Dehn surgery on a collection of solid tori in the 3-sphere;
a result known as the Lickorish-Wallace theorem [4].

One might also examine the impact of surgery on the underlying geom-
etry of a space. Consider R under the standard metric. For this surgery,
instead of ‘sewing it back differently’ we ‘sew in something else’ as follows:
remove every interval of the form [2n,2n + 1] where n € Z and replace
each with a single points, see Figure 2. The resulting space Y with the
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obvious path metric is isometric to R. This surgery is clearly not an isom-
etry but, as will become clear later, it is a quasi-isometry (in fact also a
pseudo-isometry too).

2n+2 2n+3 2n+6 2n+7
R: oo : | : ; : : ooe

o 41 m+4 Ona4s

FiGure 2. Replacing the red sets by points gives a space
quasi-isometric to R.

We formalize this notion of surgery for an arbitrary metric spaces X
using amap f: S — T where S is a subspace of X and T is another metric
space. The question we ask is whether properties of the (local) map used
to sew the space T onto S are inherited by the (global) natural map of
the total space to the surgered space. The specific properties we examine
in this paper are that of being a quasi-isometry or a pseudo-isometry.

Quasi-isometries are a very important class of functions on metric
spaces that allow for a controlled distortion. Such a function is a trans-
formation between metric spaces that distorts distances by a uniformly
bounded amount, above a given scale. A precise definition is given in Def-
inition 2.1 and its subsequent remark. Implicit in the work of Svarc [5] in
1955 and Milnor [6] in 1968, the notion of a quasi-isometry is central to
Gromov’s idea of coarse equivalence of metric spaces. In 1981, Gromov [7]
defined quasi-isometry the way it is used today. A standard example of a
quasi-isometry is the (discontinuous) map that sends each real number to
the greatest integer less than or equal to it [8]. For a general introduction
to quasi-isometries see [9].

Not all quasi-isometries are discontinous, such as the map that collapses
the unit interval in R to the origin and then scales everything by a factor
of two as well as the example illustrated above. These maps are also ex-
amples of a pseudo-isometry, a term introduced by Mostow [10] in 1974 in
his study of arbitrary symmetric spaces (see also §5.9 of [11]). A pseudo-
isometry satisfies a stronger condition than a quasi-isometry in that it has
no additive term on the upper bound. Indeed, a pseudo-isometry is a Lip-
schitz map that distorts distances by a uniformly bounded amount, above
a given scale. Not all continuous quasi-isometries are pseudo-isometries.
An explicit example is given in Example 4.2.

Our main result is to show that a surgery specified by a pseudo-
isometry yields a natural map from the original space to surgered space
that is also a pseudo-isometry.

Theorem 1.1. Suppose (X,dx) and (T,dr) are metric spaces and con-
sider a subset S C X as a metric space with metric induced from X. If
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f: S = T is a pseudo-isometry, then the natural map F: X — )/(\'f s a
pseudo-isometry as well.

The definition of )?f appears in Section 2. The proof of Theorem 1.1
appears in Section 3.

The metric on X t, obtained by variation of the quoteint metric space
construction (see e.g., [9, Chapter 1.5]), is defined via certain alternating
sequences of pairs of points in X and T taking into account the function
f- We call such sequences admissible and the length of such is the sum
of the distances for each pair (Definition 2.3). The main technical step
to prove Theorem 1.1 is Lemma 2.5 where we give a lower bound on the
length of an admissible sequence in terms of the distance in X between its
endpoints. It is in this lemma that we need to restrict to pseudo-isometries
as opposed to quasi-isometries to control the amount of additive error.

One example that is covered by Theorem 1.1 is the map F: R — R
that collapses each interval of the form [2n, 2n + 1] to a point. This is the
example discussed above. For this example we have that S = {[2n, 2n+1] |
n € Z}, T =7 and f(s) = |5]. In this case as we mentioned above, the
surgered space is isometric to R.

We present some examples in Section 4. First, An application of The-
orem 1.1 to regular trees is given in Example 4.1. Next, in Example 4.2
we show the "pseudo-" assumption is necessary in the following sense:
When the gluing map is weakened to that of a quasi-isometry the natural
map to the surgered space fails to even be a quasi-isometry. It remains
open under what conditions does a quasi-isometric gluing map yield a
quasi-isometric natural map between the original and the surgered space.

2. CONSTRUCTION OF THE SURGERED SPACE.

In this Section we define the surgered space X ¢ using a notion of ad-
missible sequences (Definition 2.3) which ties together the spaces X, S,
and T via the pseudo-isometry f: S — T. We also present a few proper-
ties of admissible sequences that form the essential parts of the proof of
Theorem 1.1.

To begin, we state the definition of a pseudo-isometry.

Definition 2.1. Let (S,dgs) and (T, dr) be metric spaces. A map f: S —
T is a pseudo-isometry if there exist contants K > 1 and C' > 0 such that
the following hold.

(1) For all o, z1 € S, we have:

eds(r0,21) — C < dr(f(ao), f(1)) < Kds(wo, 1)

(2) For all y € T, there is an z € S with dr(f(z),y) < C.
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Remark 2.2. If we allow the upper bound to also have an additive con-
stant, i.e.,

dr(f(wo), f(z1)) < Kds(xo,21) +C
then the map is called a quasi-isometry.

A metric on the surgered space will be defined via sequences of pairs
of points that (potentially) intersect the sets where the surgery occurs,
called admissible sequences. In what follows X and T are metric spaces
with metrics dy and dr respectively, and S C X is a subspace considered
as a metric space with the metric induced from X. We also have a pseudo-
isometry f: S — T with constants K and C as in Definition 2.1.

Definition 2.3. An admissible sequence is a sequence of pairs of the
form:

(2.1) v (0 Y1), (w1, v1), (w1, 92), -+ oy (Uks Uk ), (Ths Ykt1)
where:

(1) zo,yk+1 € X,
(2) T, Yi € S for ¢ = 1,...,k,
(3) uj,v; € Tlori=1,...,k, and

(4) u; = f(y;) and v; = f(x;) fori=1,... k.
We allow for the possibility that x; = y; 41 or u; = v; for each i =0,... k.
Moreover, we allow for the possibility that the pair (z¢,y1) is omitted.
In this case, the only restriction on w; is that it lies in 7. Likewise, we
allow for the possibility that the pair (zg,yg+1) is omitted. In this case,
the only restriction on vy is that it lies in T'. We say the sequence is from
Zo t0 Y41, modifying to use uq or vy accordingly if the pair (xg,y1) or
(g, Yr+1) respectively is omitted. A schematic for an admissible sequence
appears in Figure 2.

Definition 2.4. The length of an admissible sequence ~ as defined in (2.1)
is:

k
(2:2) () = dx (wo,y1) + Y (dr(ui, v:) + dx (i, Yi11))-

i=1

The next lemma shows that the length of an admissible sequence be-

tween points « and y in X is bounded below by a linear function of the
distance in X between x and y. This lemma is essential to the proof
of Theorem 1.1 as it forms the basis of the proving the pseudo-isometry
inequalities.

Lemma 2.5. Let v be an admissible sequence from x to y, where x,y € X.
Then
dx (z,y) < K%(y) + KC.
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FiGure 3. An admissible sequence

Proof. Let the admissible sequence 7y be given by:

v : (zo, 1), (u1,v1), (Z1,92), - - - 5 (k, Vi), (T Yr41)

where zo =z and Yr+1 = V.

By the definition of an admissible sequence, we have f(z;) = v; and
f(y;) = w; for i = 1,...,k. The assumption that f is a pseudo-isomtery
implies

dx (y1,zr) < Kdr(ui,vi) + KC and dr(vi,uiy1) < Kdx (i, yiy1)-

Combining the triangle inequality with the first of these inequalities of
the gives (2.3), (2.4) and (2.5). Regrouping gives (2.6) and the second of
these inequalities is used in (2.7). As K > 1, further rearranging gives
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(2.8). Finally, (2.9) follows from the definition of the length of ~.

dx(z,y) < dx(xo,y1) +dx (Y1, vx) + dx (Tr, Yr+1)
(2.4) <dx(zo,y1) + (Kdp(ui,ve) + KC) + dx (i, Yrt1)

k—1
<dx(xo,y) + K (Z(dT(Ui7 v;) + dp(viy uiv1)) + dr(ug, Uk))

=1
(2.5) +dx (g, yr+1) + KC
k k—1
= dx (o, y1) + K (Z dr(us,vi) + ) dr(v;, Ui+1)>
=1 =1
(2.6) erx(:ﬂk,yk+1) + KC

k k1
< dx(zo,y1) + K (Z dr(ui, vi) + szx(ffiayiﬂ))

i1 i1
(2.7) +dx(zk, yr1) + KC

k
(28) <K? <dx(9507y1) + Z(dT(Ui>Ui) + dX<xi7yi+1))> + KC

i=1
(2.9) < K*(y)+ KC.
This completes the proof of the lemma. O

Remark 2.6. Note that in the proof above it is necessary that f is a
pseudo-isometry and not merely a quasi-isometry. In passing from (2.6)
to (2.7), the dx summation has no additive term, effectively allowing us
to bound the lengths with a multiplicative constant. Had f been just a
quasi-isometry this summation would induce k—1 additive constants. The
number of such constants reflects the number of steps in the admissible
sequence which is not bounded by the distance. This makes it impossible
to bound the distance between x and y in terms of the length of an
admissible sequence between them.

As we complete the construction of the surgered space let us recall the
orginal space X, a subset S C X and a pseudo-isometry f: S — T. We
first glue S to T forming the space X’:

X/:XUT/SNf(S), Vs e S

In other words, points in X’ are equivalence classes. Let j: X UT —
X’ the quotient map that takes a point to its equivalence class. These
equivalence classes are one of three types:
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(1) If x € X — S, then j(x) = {z}, a singleton,
(2) It o € 8, then j(z) = {y € S | f(y) = f()} U{f(@)}, or
(8) fue T, then j(u) ={y € S| f(y) = u} U {u}.
Note, the first set in the union for type (3) may be empty.
The infimum of lengths of admissible sequences induces a pseudo-metric
px: X' x X' — R defined by:

px:(2',y') = inf{{(v) | 7}
where « is an admissible sequence from x to y where j(z) = 2’ and j(y) =
y'. We define ()/(\'f, d)?f) as the metric space induced by identifying points
in (X', px/) that have pseudo-distance equal to 0. If the corresponding
quotient map is q: X' — )A(f we have

dg,(2,9) = inf{px:(2',y") | ¢(2’) = & and ¢(y') = g}
There is an induced map F: X — )/(\'f given by the composition:
F: X5X' %X,
Summarizing the above, we have that dg, (,9) is the infimum of the set

of lengths of admissible sequences from a point in F~!(%) to a point in
F~1(9). The map F can be thought of as a kind of surgery on X, in
which a subset S is exised and replaced by a set T'.

We remark here that an immediate consequence of this definition is
that

dg, (a(«),q(y) <px(2,y) Vo', € X

This will be used in the proof of Theorem 1.1.

The lemma below indicates that if this surgery glues two points to-
gether then the two points were a bounded distance apart in the original
metric.

Lemma 2.7. If z,y € X and F(x) = F(y), then dx(x,y) < 3KC.

Proof. Fix points z,y € X and suppose that F(z) = F(y) = 2. Let 2’ =
j(z) and 3y’ = j(y). By the construction of )?f, we have that for any two
points in ¢~ 1(2) the pseudo-distance is equal to 0. Hence px-(z’,y") = 0.
Therefore, for any ¢ > 0, there must be points zg,yp € X UT with
jlxo) = 2/, j(yo) = ¢/, and an admissible sequence v from zg to yo of
length less than e.

By the definition of j: X UT — X’ we can assume that xq and yg lie
in X. Indeed, if g € T then we must have xqg = f(sg) for some s¢ as j
is injective on T — f(S). We could then prepend the sequence « by the
ordered pair (sg, S9) to get a new sequence with the same properties that
starts in X. Likewise if yg € T
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Since j(x) = j(zo), we must have that f(z) = f(zo) and hence
dX (LL', 3?0) S KC

since f is a pseudo-isometry. Likewise we have that dx(y,y0) < KC.
Using Lemma 2.5, we have that dx(xo,y0) < K?¢ + KC. Combining
these with the triangle inequality, we find:

dx (z,y) < dx (2, 20) + dx (20, y0) + dx (yo,y) < KC + K’e + KC + KC.
As this holds for all € > 0, we have dx (z,y) < 3KC as claimed. O

3. PROOF OF MAIN THEOREM

We can now prove the main theorem. It is restated here for conve-
nience.

Theorem 1.1. Suppose (X,dx) and (T,dr) are metric spaces and con-
sider a subset S C X as a metric space with metric induced from X. If
f: S = T is a pseudo-isometry, then the natural map F: X — )A(f is a
pseudo-isometry as well.

Proof. Let X, S, T be as in the statement of the theorem and f: S — T
a pseudo- isometry with constants K > 1 and C' > 0 as in Deﬁnltlon 2.1.
Let X’ and X; be as defined in Section 2 and F: X — X; the map
induced by the composition:

F: XLX' %X,
First we show F' is coarsely surjective. By construction, for any ¢ €
X; — F(X) there is some t € T such that § = ¢(j(t)). As f: S = T
is coarsely surjective, there is an s € S where dr(f(s),t) < C. The

admissible sequence (s,s), (f(s),t) from s to t has length at most C.
Therefore px-(j(s),7(t)) < C and hence

dg, (F(s).9) = g, (a(i(), aGi(1))) < px:((s), (1) < C
as well.

Next we demonstrate an upper bound on dg, (F(z),F(y)). Given

points z,y € X, for the admissible sequence v : (x,y) we find that
px(j(2),j(y)) < €(v) = dx(x,y). Therefore

dg, (F(x), F(y)) = dg, (a(i(2)),a(i () < px:(i(x),i(y)) < dx(z,y).

Finally, we demonstrate a lower bound on d)?f (F(z), F(y))- Let € > 0.
Given points z,y € X, we fix points xg,yo € X where F(z) = F(xo),
F(y) = F(yo), and for which there exists an admissible sequence ~ from
o to yo of length less than d ¢ (F(x), F(y))+e. We note that such points
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and admissible sequence exist by an argument similar to the one presented
in Lemma 2.7.
By Lemmas 2.5 and 2.7 we now have that:

dx(z,y) < dx(x,x0) + dx (xo,y0) + dx (Yo, v)
<3KC + K*(y) + KC + 3KC

< K2 (dg, (F(x), F(y)) +¢€) + TKC,

As this holds for all € > 0, rearranging we find that:

%dx@c,y) - % < dg, (F(2), F(y)- .

4. EXAMPLES

In this section we present two examples. The first is an application of
Theorem 1.1 where we show that the regular tree of degree 4 is pseudo-
isometric to the regular tree of degree 6 (Example 4.1). The second exam-
ple shows that the “pseudo-isometry” assumption in Theorem 1.1 cannot
be weakened to “quasi-isometry,” even if the conclusion is also weakened
(Example 4.2).

Example 4.1. Let X be the regular tree of degree 4 where every edge
is isometric to the unit interval [0,1]. We consider the subset S C X
consisting of every other horizontal edge, including its incident vertices,
as indicated in Figure 4. Specifically, we can identify X as the Cayley
graph of the free group of rank 2, F», corresponding to a basis {g1,¢92}
(see Chapter 2 of [8] for details). Then there are two orbits of edges the
corresponding to the set of horizontal edges and the set of vertical edges
respectively in Figure 4. Let e; be the edge whose originating vertex is
the identity and whose terminal vertex is g;. Then the set S corresponds
to the set of edges of the form we; where the terminal syllable of w is an
even power of g;. In other words, w € Fj is of the form:

w=w'g}
where w' € F; is either trivial or ends in g5' and p € Z.

Let T C X be the set of midpoints of the edges in 5, considered as a
metric space using the metric from X. The map f: S — T that sends
each edge in S to its midpoint is a pseudo-isometry where K = 2 and
C = 1. As shown in Figure 4, the surgered space )/(\'f is the regular
tree of degree 6. This example can be generalized to construct explicit
pseudo-isometries between regular trees with other degrees as well.
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FiGcure 4. The regular tree of degree 4 with the subset
S (shown in red). The surgered space is the regular tree
of degree 6.

Example 4.2. Let X be the closed positive ray in R, i.e., X = [0,00).
Define two sequences (a;), (b;) C X as follows starting with ¢ = 0:
a;i=1+i— (1) :0,3/,11/4 315
bi=2+41i— (1) :1,5/,15/4,39/s, ...
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These sequences are related by the equations a; = b;_1 + (1/2)i and b; =
a; + 1. We consider the subset S C X given by:

o0
S = U [(li, bz]
=0
See Figure 5.
a by as b3
X: l l +— H H tooee
ap bO az P aq b4

FiGURE 5. The closed positive ray with the subset S
(shown in red). The surgered space is the half-open in-
terval [0,1) C R.

Let T'C X be the set of all a;, considered as a metric space using the
metric from X. The map f: S — T that sends each interval [a;, b;] to a; is
a (continuous) quasi-isometry with K = 1,C' = 2, but it is not a pseudo-
isometry for any choice of constants K and C. Indeed, ds(b;—1,a;) =
(1/2)z — 0 as ¢ — oo while dT(f(bi_l),f(ai)) = dT(ai_l,ai) >1 for all 7.

-~

In this case, the surgered space X is isometric to the half-open interval
[0,1) C R. In particular, X is not pseudo-isometric (nor quasi-isometric)

~

to Xf.

The failure of this example is directly tied to the failure for Lemma 2.5
in this setting. There are admissible sequences with bounded length con-
necting points arbitrarily far apart in X. See Remark 2.6.

This example shows the necessity of the hypothesis of a pseudo-isometry
in the statement of Theorem 1.1. It would be interesting to find robust
conditions on S C X so that if f: S — T is a quasi-isometry, then the
surgered space X ¢ is quasi-isometric to X.
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