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Abstract. Let G be a free-by-cyclic group or a 2–dimensional right-angled Artin group.
We provide an algebraic and a geometric characterization for when each aspherical simplicial
complex with fundamental group isomorphic to G has minimal volume entropy equal to
0. In the nonvanishing case, we provide a positive lower bound to the minimal volume
entropy of an aspherical simplicial complex of minimal dimension for these two classes of
groups. Our results rely upon a criterion for the vanishing of the minimal volume entropy
for 2–dimensional groups with uniform uniform exponential growth. This criterion is shown
by analyzing the fiber π1–growth collapse and non-collapsing assumptions of Babenko–
Sabourau [1].

1. Introduction

The volume entropy of a finite simplicial complex X equipped with a piecewise Riemannian
metric g is defined as

ent(X, g) = lim
t→∞

1

t
log vol(Bx0(t), g̃)

where Bx0(t) is the ball of radius t centered at some point x0 in the universal cover X̃ and

g̃ is the pull-back metric on X̃. This limit always exists and does not depend on the choice
of x0. Initially defined as a Riemannian manifold invariant, the volume entropy measures
the exponential growth rate of the volume of balls in the universal cover and is related to
the growth of the fundamental group (Švarc[33] and Milnor [24]) and to the dynamics of the
geodesic flow. Specifically, in this context, Dinaburg showed that the volume entropy gives
a lower bound on the topological entropy of the geodesic flow [13]. Manning further showed
that if the sectional curvatures for the metric are all nonpositive, then the volume entropy
equals the topological entropy of the geodesic flow [22].

In order to obtain a topological invariant of X, it is natural to optimize the volume
entropy over all piecewise Riemannian metrics. To get an invariant that is nondegenerate,
we must take into account the effect of scaling the metric by a constant and counteract this
by multiplying the volume entropy by an appropriate root of the volume. This leads to
the notion of minimal volume entropy, introduced by Gromov originally in the context of
Riemannian manifolds [16]. To this end, we set

ω(X, g) = ent(X, g) vol(X, g)1/ dim(X).

The minimal volume entropy of a finite simplicial complex X is defined by

ω(X) = inf
g
ω(X, g)
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where g runs over all piecewise Riemannian metrics on X.
When M is a closed, orientable n–manifold, Gromov showed that ω(M)n ≥ cn ‖M‖ where
‖M‖ is the simplicial volume of M and cn > 0 is a constant that only depends on the
dimension [16]. In dimensions at most 3, the invariants ω(M)n and ‖M‖ are proportional, as
we explain below. It is unknown whether or not the reverse inequality holds up to a constant
in higher dimensions. Nevertheless, it is in this sense that ω(X)dim(X) can be viewed as a
substitute for simplicial volume for X when there is no natural choice of fundamental class.

Katok was the first to realize that minimal volume entropy could select an optimal metric,
up to scale. He proved that if M is a closed surface with negative Euler characteristic then
ω(M, g) ≥ ω(M, ghyp) where ghyp is any hyperbolic metric, with equality if and only if g
has constant curvature [19]. This was extended by Besson–Courtois–Gallot to closed, real
hyperbolic manifolds of any dimension. [5].

For simplicial complexes that are not manifolds, there are few results. When X is a finite
connected graph and every vertex has degree at least 3, Lim gave an explicit description of
a metric g0 so that ω(X) = ω(X, g0) [20]. Analogous to the results for closed real hyperbolic
manifolds mentioned above, Lim additionally proves that this metric is unique up to scale.
McMullen gave an alternate proof of this result [23]; I. Kapovich–Nagnibeda gave a proof of
this result when every vertex in the graph has degree 3 [18].

Other general results regarding minimal volume entropy for simplicial complexes include
the fiber π1–growth collapsing/non-collapsing assumptions recently provided by Babenko–
Sabourau that are useful in showing whether or not ω(X) vanishes [1]. These will play a
key role in this paper and are discussed in more detail later on in the Introduction and in
Section 3.

As mentioned above, the volume entropy is related to the growth of the fundamental group
in that it—or a slight variation—can be used to determine the growth type: polynomial
or exponential. However, in general, the minimal volume entropy of a simplicial complex
does depend on more than the fundamental group, as originally observed by Babenko [2].
(Although it will not play a role in what follows, in the context of manifolds there are
circumstances where the minimal volume entropy is determined by the fundamental group;
see the works of Babenko [2] and Brunnbauer [8].)

This leads into the central object of study in this paper. For a fixed group G we study the
minimal volume entropy of a G–complex i.e., a finite aspherical simplicial complex X such
that π1(X) ∼= G. By taking the infimum over G–complexes with minimal dimension, we
obtain an invariant of a group G of finite type. We thus define the minimal volume entropy
of G as

ω(G) = inf
X
ω(X)

where X runs over all G–complexes with dim(X) equal to the geometric dimension, gd(G),
i.e., the minimal dimension of a G–complex. For free groups, it was observed by both
I. Kapovich–Nagnibeda [18] and McMullen [23] that if X is a finite graph and π1(X) is
isomorphic to a free group of rank n, then ω(X) ≥ (3n− 3) log 2 with equality if and only if
every vertex in X has degree 3. Cast in the above language, this gives ω(Fn) = (3n−3) log 2.

In this paper we study the minimal volume entropy when G is either a free-by-cyclic
group or a 2–dimensional right-angled Artin group (RAAG). Each such group G admits a
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2–dimensional aspherical G–complex. In each case, we prove that either the minimal volume
entropy vanishes for every G–complex or ω(G) is uniformly bounded from below. Moreover,
as we will describe below, whether or not ω(G) vanishes is directly related to whether or
not G is tubular, i.e., whether it admits a graph of groups decomposition with vertex groups
equal to Z2 and edge groups equal to Z.

We state our results in these two cases and then describe how we apply the fiber π1–growth
collapsing/non-collapsing assumptions of Babenko–Sabourau.

Free-by-cyclic groups. Every free-by-cyclic group is determined by a finite rank free group
Fn and an element φ ∈ Out(Fn), the outer automorphism group of Fn. Denote by Gφ the
free-by-cyclic group associated to φ. Specifically, the group Gφ is given by the presentation:

Gφ = 〈Fn, t | txt−1 = Φ(x)〉

where Φ ∈ Aut(Fn) represents φ.
We are able give an explicit description—up to passing to a power—for which φ lead to

vanishing minimal volume entropy. We call outer automorphisms with such a description
geometrically linear unipotent (GLU) (see Definition 5.4). We prove:

Theorem 1.1. Suppose that φ is an outer automorphism of a finitely generated free group.
The following are equivalent:

(1) ω(X) = 0 for every Gφ–complex X.
(2) Gφ is virtually tubular.
(3) Some power of φ is geometrically linear unipotent.

If none of these conditions hold, then ω(Gφ) ≥ log 3
12·106 .

There is an established connection between free-by-cyclic groups and mapping tori Mf of
homeomorphisms of closed orientable surfaces f : S → S. GLU automorphisms have linear
growth, and via this connection are reminiscent of a multi-twist homemorphism of a closed
orientable surface. Pieroni showed that ω(M)3, for M a closed orientable 3–manifold, equals
two times the sum of the volumes of the hyperbolic components in the JSJ decomposition [26].
In particular, by the celebrated result of Thurston, the minimal volume entropy of Mf

vanishes if and only if some power of f is homotopic to a multi-twist [32]. In this way,
Theorem 1.1 result can be regarded as a free group analogue. However, in contrast to
the case of a mapping class on a closed surface, not all subexponentially growing outer
automorphisms of free groups have linear growth, and not all Gφ with linearly growing φ
have vanishing minimal volume entropy.

The L2–torsion −ρ(2)(�) is an analytic invariant of certain groups that may also play the
role of volume. Indeed, if M is a closed orientable 3–manifold, then Lück–Schick proved that
−ρ(2)(π1(M)) equals 1

6π
times the sum of the volumes of the hyperbolic components in the JSJ

decomposition [21]. By combining the work of Gromov, Soma and Thurston, we have that
‖M‖ also equals a constant times the sum of the of the volumes of the hyperbolic components
in the JSJ decomposition in this case [16, 30, 31]. Thus we see that these three notions of
volume—minimal volume entropy, L2–torsion, and simplicial volume—are all proportional
for closed orientable 3–manifolds, in particular, for mapping tori of homeomorphisms of
closed orientable surfaces.
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As there is no well-defined fundamental class for a free-by-cyclic group, there is no natural
way to define the simplicial volume. However, it is interesting to compare the minimal
volume entropy and the L2–torsion for free-by-cyclic groups. The second author proved that
−ρ(2)(Gφ) vanishes when φ is polynomially growing [11]—conjecturally, the converse holds
as well. As Theorem 1.1 shows that most free-by-cyclic groups with polynomially growing
monodromy have nonvanishing minimal volume entropy, we see that these two invariants are
not proportional in this setting. The second author provided an upper bound on −ρ(2)(Gφ)
using the dynamics of φ [11], it would be interesting to find an upper bound on the minimal
volume entropy of Gφ as well.

Theorem 1.1 provides a characterization of free-by-cyclic groups that are virtually tubular.
We note that Button has provided a characterization of tubular groups that are free-by-
cyclic [9].

Right-angled Artin groups. Let Γ be a finite simplicial graph. The right-angled Artin group
AΓ is the group whose generators are the vertices of Γ and whose relations are commutations
between generators when the vertices are incident on an edge in Γ. That is, AΓ is given be
the presentation:

AΓ = 〈V Γ | vw = wv if v and w are incident on an edge in Γ 〉.

Right-angled Artin groups, though simple to define, form an essential class of groups in low-
dimensional topology and geometric group theory. Partly, this is due to the suprising richness
of their subgroups, their role as an interpolation between free groups and free abelian groups
and also the frequency at which they arise as subgroups of geometrically defined groups.

The group AΓ has geometric dimension equal to 2 if and only if Γ has no triangles, i.e.,
K3 is not a subgraph of Γ. In this case an AΓ–complex, known as the Salvetti complex
SΓ, is built out of unions of circles S1 and tori S1 × S1 that are identified along certain
cyclic subgroups. This structure seems reminiscent of a tubular group, however, not all 2–
dimensional right-angled Artin groups are (free products of) tubular groups. In fact, whether
or not a 2–dimensional right-angeled Artin group is tubular is directly related to its minimal
volume entropy.

Theorem 1.2. Suppose that AΓ is a right-angled Artin group with gd(AΓ) = 2. The following
are equivalent.

(1) ω(X) = 0 for every AΓ–complex X.
(2) AΓ is a free product of tubular groups and a free group.
(3) Γ is a forest.

If none of these conditions hold, then ω(AΓ) ≥ log 3
2·106 .

We remark that according to Droms, AΓ is a 3-manifold group exactly when Γ is a disjoint
union of trees and triangles [14]. Since a triangle corresponds to Z3, Γ is a forest exactly
when AΓ is a 3–manifold group with geometric dimension at most 2.

It seems likely a characterization for the vanishing of minimal volume entropy of right-
angled Artin groups of arbitrary dimension is possible, although the statement may not be
so neat.
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Fiber π1–growth assumptions. Both theorems above are consequences of the fiber π1–growth
collapsing/non-collapsing assumptions of Babenko–Sabourau [1]. These assumptions relate
the vanishing of the minimal volume entropy of a simplicial complex X to the existence or
non-existence of maps f : X → P to lower dimensional complexes, based on the π1–growth
of fibers. Briefly, the two assumptions are:

• Fiber π1–Growth Collapsing Assumption (FCA) – For some simplicial map f : X →
P , every induced subgroup π1(f−1(x)) ⊆ π1(X) is subexponentially growing with
subexponential growth rate less than 1− dimP

dimX
.

• Fiber π1–Growth Non-Collapsing Assumption (FNCA) – There is a constant δ such
that for every simplicial map f : X → P , some induced subgroup π1(f−1(x)) ⊆ π1(X)
is has uniform exponential growth rate at least δ.

Although the two criteria are not a priori complementary, we show that they are in the
case of free-by-cyclic groups and 2–dimensional right-angled Artin groups. Moreover, the
two assumptions are complementary when the fundamental group of X has uniform uniform
exponential growth and satisfies a technical condition on subexponentially growing subgroups
(see Definition 2.1 and Proposition 3.8).

When X is a 2–dimensional simplicial complex, the fiber π1–growth assumptions consider
maps f : X → P where P is a finite simplicial graph. Applying standard geometric group
theoretic techniques, when X satisfies the FCA there is an induced graph of groups de-
composition on π1(X) where the vertex and edge groups are all subexponentially growing
(Proposition 4.1).

When a group G has uniform uniform exponential growth (denoted by δ(G) > 0 in the
following), we prove the following vanishing criteria:

Theorem 1.3. Let G be a group with gd(G) = 2. Suppose δ(G) > 0 and that the subex-
ponentially growing subgroups of G belong to the collection {{1},Z,Z2, BS(1,−1)}. Then
ω(X) = 0 for every G–complex X if and only if G is the fundamental group of a graph of
groups where the edge groups belong to the collection {{1},Z} and the vertex groups belong
to the collection {Z,Z2, BS(1,−1)}.
Remark 1.4. The Baumslag–Solitar group BS(1,−1) = 〈a, t | tat−1 = a−1〉 is the funda-
mental group of the Klein bottle. By a result of Degrijse, if G has cohomological dimension
equal to 2, has subexponential growth and the group algebra C[G] does not have zero-divisors,
then G is either Z2 or BS(1,−1) [12, Theorem B]. Conjecturally, if G is torsion-free then
C[G] does not contain any zero-divisors, which would render this hypothesis unnecessary.
Therefore conjecturally, Theorem 1.3 applies to any group with gd(G) = 2 and δ(G) > 0.

Theorem 1.3 applies to the case of groups G with gd(G) = 2 that act freely and cocom-
pactly on CAT(0) cube complexes with isolated flats by recent work of Gupta–Jankiewicz–
Ng [17].

1.1. Outline of paper. In Section 2, we discuss notions of growth in groups and show that
the vanishing of ω(X) is a homotopy invariant of G–complexes of minimal dimension. Section
3 recalls the fiber π1–growth collapsing/non-collapsing assumptions of Babenko–Sabourau [1]
and proves that these are complementary when G has Property U . After briefly reviewing
graphs of groups, in Section 4 we prove Theorem 1.3. In Section 5 we prove Theorem 1.1
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regarding the minimal volume entropy of free-by-cyclic groups. Finally, in Section 6, we
prove Theorem 1.2 regarding the minimal volume entropy of 2–dimensional right-angled
Artin groups.

1.2. Acknowledgements. The authors would like to thank Derrick Wigglesworth for dis-
cussions regarding Lemma 5.2. We also thank the Babenko and Sabourau and also the
referee for pointing out an error in a previous version of the proof of Theorem 3.3. The
first author is supported by NSF grants No. DMS-1906269 and DMS-2052801. The second
author is supported by Simons Foundation Grant No. 316383.

2. Entropy and volume in groups

In this section discuss growth in groups and the relation between the minimal volume
entropy of a group and the minimal volume entropy of a finite index subgroup.

2.1. Growth in groups. Let G be a finitely generated group and suppose that S ⊂ G is a
finite generating set. For an element h ∈ G, by ‖h‖S we denote the word length of h with
respect to S.

The growth rate of G with respect to S is the quantity

δ(G,S) = lim
t→∞

1

t
log #{h ∈ G | ‖h‖S ≤ t}.

We observe that if X is the Cayley graph of G with respect to the generating set S and g
is the piecewise Riemannian metric on X for which each edge of X is isometric to the unit
interval, then ent(X, g) = δ(G,S). If δ(G,S) > 0 for some finite generating set S ⊂ G, then
it is known that δ(G,S ′) > 0 for all finite generating sets S ′ ⊂ G. In this case, the group G
is said to have exponential growth. Else, the group is said to have subexponential growth.

In the case of subexponential growth, we consider the subexponential growth rate of G
which is defined by

ν(G) = lim
t→∞

log log #{h ∈ G | ‖h‖S ≤ t}
log t

.

This quantity satsifies 0 ≤ ν(G) ≤ 1. We remark that if #{h ∈ G | ‖h‖S ≤ t} is bounded
by a polynomial, then ν(G) = 0.

In the case of exponential growth, to get a quantity that is independent of the generating
set, we can take the infimum. This leads to the uniform growth rate of G which is defined
by

δ(G) = inf
S
δ(G,S)

where S runs over all finite generating sets for S. The group G is said to have uniform expo-
nential growth if δ(G) > 0. There are examples of finitely generated groups with exponential
growth, but not uniform exponential growth [34].

Taking this concept one step further, we can take the infimum over all finitely generated
exponentially growing subgroups of G as well. This leads to the uniform uniform growth
rate of G which is defined by

δ(G) = inf
H
δ(H)
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where H runs over all finitely generated subgroups of G with exponential growth. The group
G is said to have uniform uniform exponential growth if δ(G) > 0.

Finally, the following property is relevant to the sequel.

Definition 2.1. A finitely generated group G has Property U if δ(G) > 0 and if H is a
subgroup of G with subexponential growth, then ν(H) = 0.

In particular, if δ(G) > 0 and every subexponentially growing subgroup of G has polyno-
mial growth, then G has Property U .

2.2. Monotone Maps and Finite Index Subgroups. Let X and Y be simplicial com-
plexes with dim(X) = dim(Y ) = m. A simplicial map f : Y → X is said to be n–monotone
for n ≥ 0 if the preimage of any open m–simplex in X consists of at most n open m–simplices
in Y . The following lemma gives a relation between the minimal volume entropy of X and
Y using a n–monotone map f : Y → X. This lemma appears in a paper by Brunnbauer [8,
Lemma 4.1]. The proof is attributed to Babenko [2] and appears in a paper by Sabourau [27,
Lemma 3.5].

Lemma 2.2. Let f : Y → X be an n–monotone map between m–dimensional finite simplicial
complexes. If f∗ : π1(Y )→ π1(X) is injective, then

n1/m · ω(X) ≥ ω(Y ).

There are two useful consequences of this bound.

Proposition 2.3. Let G be a group of finite type and let X and Y be G–complexes with
dim(X) = dim(Y ). Then ω(X) = 0 if and only if ω(Y ) = 0.

Proof. Let f : X → Y be a homotopy equivalence and let f ′ : Y → X be the homotopy
inverse to f . By the simplicial approximation theorem, we may assume that both of these
maps are simplicial. Let m denote the common dimension of X and Y . By finiteness, each
m–simplex of Y has at most n preimages for some n > 0 under f . Similarly, there exists
n′ > 0 such that each m–simplex of X has at most n′ preimages under f ′. The proposition
now follows from Lemma 2.2, since n and n′ are both positive. �

We record the following corollary of Proposition 2.3.

Corollary 2.4. Let G be a group of finite type and suppose that ω(X) = 0 for some G–
complex with dim(X) = gd(G). Then ω(X) = 0 for every G–complex X with dim(X) =
gd(G).

The other useful consequence is with regards to finite index subgroups.

Proposition 2.5. Suppose that G is a group of finite type. If H is a subgroup of G and
[G : H] = n, then

n1/ gd(G) · ω(G) ≥ ω(H).

Proof. Let G and H be as in the statement. As G has finite type, so does H and moreover
gd(G) = gd(H).
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Suppose that X is a G–complex with dim(X) = gd(G). Let f : Y → X be the cover cor-
responding to the subgroup H. Then f is n–monotone and f∗ : π1(Y )→ π1(X) is injective.
Hence by Lemma 2.2 we have that

n1/ gd(G) · ω(X) ≥ ω(Y ).

As X is an arbitrary G–complex with dim(X) = gd(G) and ω(Y ) ≥ ω(H) for any H–complex
Y with dim(Y ) = gd(H), the result follows. �

In particular, if ω(H) > 0 for some finite index of a group G of finite type, then ω(G) > 0
as well.

3. Fiber π1–growth assumptions

In this section we recall the fiber π1–growth collapsing and non-collapsing assumptions,
introduced by Babenko–Sabourau [1]. The collapsing assumption provides a sufficient con-
dition for the minimal volume entropy to vanish, while the non-collapsing assumption guar-
antees it is nonzero, and also provides a lower bound.

3.1. Fiber π1–growth collapsing assumption. First we discuss the collapsing assump-
tion. Let X be a simplicial complex. A closed subset F ⊆ X has subexponential growth if
for every connected component F0 ⊆ F , the inclusion induced image of π1(F0) in π1(X) has
subexponential growth.

Definition 3.1 (Babenko–Sabourau [1]). A simplicial complex X of dimension m satisfies
the fiber π1–growth collapsing assumption (FCA) if there exists a simplicial map f : X → P
to a finite simplicial complex P of dimension k such that for every p ∈ P , the fiber f−1(p)
has subexponential growth with subexponential growth rate less than m−k

m
.

Babenko–Sabourau prove that the FCA is sufficient to ensure that the minimal volume
entropy vanishes. We will provide a proof of a weaker version that is sufficient for our
needs. Namely, we will show that satisfying the FCA with the stronger assumption that
the subexponential growth rate of the fibers is less than 1/ dimX implies that the minimal
volume entropy vanishes. Our proof is based on their outline but the assumption about the
subexponential growth rate of the fibers simplifies the argument.

To do this, we need some facts about subexponential functions. Let φ : [0,∞)→ [0,∞) be
a continuous, non-decreasing, subexponential function. By definition, for every 0 < λ ≤ 1,
there exists Tλ ∈ [0,∞) such that for all t ≥ Tλ

φ(t) ≤ exp(λt).

We may assume Tλ is the largest t such that φ(t) = exp(λt). The next lemma describes the
dependence of Tλ on λ as λ→ 0+.

Lemma 3.2. Suppose that φ : [0,∞)→ [0,∞) is a continuous, non-decreasing, subexponen-
tial function and that φ(t0) > 1 for some t0 ∈ (0,∞). The following statements hold.

(1) The function λ 7→ Tλ is continuous and strictly decreasing on (0, λ0] where λ0 =
min{1, 1

t0
log φ(t0)}.

(2) limλ→0+ Tλ =∞.
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(3) The inverse function t 7→ Λt on [t0,∞) defined by TΛt = t satisfies

lim sup
t→∞

Λt

tν+ε−1
≤ 1

for any ε > 0 where ν is the subexponential growth rate of φ(t).

Proof. Consider hλ(t) = exp(λt)−φ(t), so that Tλ is the largest t for which hλ(t) = 0. Notice
that hλ(t) ≥ 0 for t ≥ Tλ as well by definition. Clearly hλ(t) is continuous in both λ and t.
This implies that Tλ is continuous as a function of λ.

If 0 < λ ≤ λ0, then exp(λt0) ≤ exp(λ0t0) ≤ φ(t0) which implies that Tλ ≥ t0 > 0. Hence,
for 0 < λ < µ ≤ λ0, as exp(λt) < exp(µt) for t > 0, we find that hλ(Tµ) < hµ(Tµ) = 0. Thus
Tλ > Tµ. This shows that Tλ is strictly decreasing on (0, λ0], equivalently, strictly increasing
as λ→ 0+. This completes the proof of (1).

Suppose Tλ → T0 <∞ as λ→ 0+. Since Tλ is strictly decreasing on (0, λ0], we have that
T0 > Tλ0 ≥ t0. Therefore for all λ > 0, we have hλ(T0) > 0 and hence limλ→0+ hλ(T0) ≥ 0. On
the other hand, for any fixed t > 0, we have that exp(λt)→ 1 as λ→ 0+. Thus, in particular,
limλ→0+ exp(λT0) = 1. But then as φ(T0) > 1, since t0 < T0 and φ is increasing, this implies
limλ→0+ hλ(T0) < 0, a contradiction. Therefore we conclude that limλ→0+ Tλ = ∞. This
shows (2).

Finally, suppose that 0 ≤ ν ≤ 1 is the subexponential growth rate of φ(t). Thus for any
ε > 0 we have that φ(t) ≤ exp(tν+ε) for large t. Hence for large t, we have exp(Λtt) = φ(t) ≤
exp(tν+ε). This gives Λt ≤ tν+ε−1 for large enough t and thus lim supt→∞

Λt
tν+ε−1 ≤ 1. This

shows (3). �

Given a simplicial map f : X → P , we will call an edge e of X long if f(e) is an edge of
P , and short otherwise, in which case f(e) is a vertex of P .

Theorem 3.3 (Babenko–Sabourau [1, Theorem 2.6]). Let X be a finite, connected, simplicial
complex. If X satisfies the FCA, then ω(X) = 0.

Proof when subexponential growth rate of fibers is less than 1/ dimX. Let m denote the di-
mension of X. Suppose f : X → P is a simplicial map where dimP < m and for every
p ∈ P , the fiber f−1(p) has subexponential growth with subexponential growth rate ν where
ν < 1/m. Without loss of generality, we may assume that f : X → P is surjective and has
connected fibers (see, for example, Proposition 2.1 of [1]). Fix piecewise Riemannian metrics
gX , gP on X and P respectively, where the metric on each simplex agrees with that of a
Euclidean simplex whose edges all have length 1. We can pull back the metric f ∗(gP ) to
X, where it is everywhere degenerate because the dimension of P is strictly smaller than m.
Consider a new metric gs for s > 0 defined pointwise by

gs = f ∗(gP ) + s2gX .

Since f ∗(gP ) is everywhere degenerate, we clearly have

lim
s→0+

vol(X, gs) = 0.

We will prove the theorem by showing that ω(X, gs) = ent(X, gs) vol(X, gs)
1/m goes to 0

as s approaches 0. It is not the case in general that ent(X, gs) stays bounded as s → 0+,
nonetheless, we can show that ω(X, gs) does limit to 0 as s→ 0+.
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To calculate the volume entropy we will estimate the number of homotopy classes in X of
gs–length at most t, as t becomes large.

Let us first estimate the number of homotopy classes in fibers. Since gs reduces to s2gX
along fibers, we can choose s sufficiently small so that each fiber has diameter at most 1

2
.

Suppose Fv = f−1(v) is a fiber over some vertex v ∈ P . Fix a basepoint x ∈ Fv, and for
t ≥ 0 let Ns(Fv, x; t) denote the number of homotopy classes of loops in Fv based at x whose
gs–length is at most t. Then since gs scales the gX(= g1)–length of edges in Fv by s, we have

Ns(Fv, x; t) = N1

(
Fv, x;

t

s

)
.

As each fiber is subexponentially growing by asumption and since there are only finitely
many vertices in P , for every 0 < λ ≤ 1, there exists Tλ such that for all t ≥ Tλ and vertex
v ∈ P , we have

N1 (Fv, x; t) ≤ exp(λT ).

Define N (t) = maxv∈P N1 (Fv, x; t) and extend N by linear interpolation to a continuous
non-decreasing function N : [0,∞)→ [0,∞). We define Cλ = N (Tλ), so that for all vertices
v ∈ P and for all t ≥ 0,

N1 (Fv, x; t) ≤ Cλ exp(λt).

For fixed s, we can let λ depend on s. Suppose that N (t0) > 1 for some t0 > 0 so that
N (t) satisfies the hypotheses of Lemma 3.2. Let λ0 = min{1, 1

t0
logN (t0)} as defined in

Lemma 3.2. Assume that s is small enough so that 1
s
≥ Tλ0 . Since Tλ is strictly decreasing

on (0, λ0] and limλ→0+ Tλ =∞, there is a Λ1/s ∈ (0, λ0] such that TΛ1/s
= 1

s
. If N (t) ≤ 1 for

all t, we take Λ1/s = 0.
An arbitrary loop γ in X can be represented as an edge path in the 1–skeleton. Decompose

such a path γ as
γ = ε1σ1 · · · εkσk,

where the εi are long edges, and the σi are edge paths consisting of edges in some fiber Fvi .
Connect the endpoints of each σi to the basepoint xi ∈ Fvi to form a loop σi at the expense

adjoining to paths of length at most diam(Fvi , gs) <
1
2
. Hence if σi has gs–length ti then the

length of σi is at most ti + 2 diam(Fvi , gs) ≤ ti + 1. Up to homotopy, the number of possible
σi of length at most ti is then bounded above by

Ns(Fvi , xi; ti + 2 diam(Fvi , gs)) ≤ N1

(
Fvi , xi;

ti + 1

s

)
≤ CΛ1/s

exp

(
Λ1/s

ti + 1

s

)
.

Let ne be the total number of edges in X. On the one hand, each long edge εi has gs–
length at least 1, hence k is less that than the length of γ. On the other hand, we also have∑k

i=1 ti is less than the length of γ. Thus, we can bound the total number of possible paths
of gs–length at most some integer t by

nte

t∏
i=1

CΛ1/s
exp

(
Λ1/s

ti + 1

s

)
= nteC

t
Λ1/s

exp

(
Λ1/s

s

t∑
i=1

ti

)
exp

(
Λ1/st

s

)
≤ nteC

t
Λ1/s

exp

(
Λ1/st

s

)
exp

(
Λ1/st

s

)
.
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Taking the logarithm, dividing by t and letting t→∞ we obtain:

ent(X, gs) ≤ log(ne) + log(CΛ1/s
) +

2Λ1/s

s

Recall now that CΛ1/s
= N (TΛ1/s

) = N
(

1
s

)
. Let ε = 1

2
(1/m− ν) so that ν + 2ε = 1/m. By

Lemma 3.2(3) we have Λ1/s ≤ s1−(ν+ε) for sufficiently small s. Thus, for such s, we have

ent(X, gs) ≤ log(ne) + logN
(

1

s

)
+

2

sν+ε
.

Let V = vol(X, gX)
1
m be the normalized volume of X with the initial metric gX . Therefore,

the normalized volume of gs is s1/mV . Multiplying the above by this we get

ent(X, gs) vol(X, gs)
1
m ≤ s1/mV log(ne) + s1/mV logN

(
1

s

)
+ 2V sε.

The first and third terms on the right hand side clearly go to 0 as s→ 0+. The middle term
goes to 0 as s → 0+ because N is a subexponential function with subexponential growth
rate less than 1/m. Thus, the left hand side must go to 0 as s → 0+, so the sequence of
metrics (X, gs) shows that ω(X) must be 0. �

As a consequence, we get the following strengthening of Corollary 2.4.

Proposition 3.4. Let G be a group of finite type. Then the following are equivalent:

(1) ω(X) = 0 for some G–complex X with dim(X) = gd(G).
(2) ω(X) = 0 for every G–complex X.

Proof. Suppose that ω(X) = 0 where dim(X) = gd(G) and let Y be a G–complex. If
dim(Y ) = dim(X), then ω(Y ) = 0 by Corollary 2.4. Else we have that dim(Y ) > dim(X).
Let f : Y → X be a homotopy equivalence. As in Proposition 2.3, we may assume that f
is simplicial. As f is a homotopy equivalence, every fiber f−1(p) has subexponential growth
with subexponential growth rate 0. Indeed, the inclusion induced image of π1(f−1(p)) in
π1(Y ) is trivial. Therefore Y satisifes the FCA and ω(Y ) = 0 by Theorem 3.3. This shows
that (1) implies (2).

The other implication is obvious. �

3.2. Fiber π1–growth non-collapsing assumption. Next, we discuss the non-collapsing
assumption.

Definition 3.5 (Babenko–Sabourau [1]). A simplicial complex X of dimension m satisfies
the fiber π1-growth non-collapsing assumption (FNCA) if there exists a constant δ = δ(X) >
0 such that for every simplicial map f : X → P to a finite simplicial complex P of dimension
at most m − 1, there exists p ∈ P and a connected component F0 ⊆ f−1(p) such that the
inclusion induced image of π1(F0) in π1(X) has uniform exponential growth at least δ.

Babenko–Sabourau prove that the FNCA is sufficient to ensure non-vanishing of the min-
imal volume entropy and moreover provide a positive lower bound in this case.
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Theorem 3.6 (Babenko–Sabourau [1, Theorem 3.6]). If X is a connected, finite simplicial
complex with dimension m satisfying the FNCA, then ω(X) > 0. More precisely, we have

ω(X) ≥ δ

2 · Cm
where δ = δ(X) and Cm > 0 is a constant depending only on the dimension m.

Remark 3.7. As we are primarily concerned with 2–dimensional simplicial complexes, we
note that according to Papasoglu one may take C2 = 106 [25].

3.3. FCA and FNCA are complementary for groups with Property U . As pointed
out by Babenko–Sabourau, the defintions of FCA and FNCA are not complementary. The
subtlety lies in the subexponential growth rate in the definition of the FCA and the uniformity
of the constant δ in the definition of the FNCA. If we assume that the fundamental group
of the complex has Property U , then this issue disappears.

Lemma 3.8. Let G be a group of finite type and suppose that G has Property U . Then any
G–complex either satisfies the FCA or the FCNA.

Proof. Let G be as in the statement and let X be a G–complex.
Suppose that X does not satisfy the FCA. Hence, given any simplicial map f : X → P

where P is a simplicial complex with dim(P ) < dim(X), there is some point p ∈ P and
a component F0 ⊆ f−1(p) such that the inclusion induced image of π1(F0) in π1(X) has
exponential growth. As G ∼= π1(X), we must have that the uniform growth rate of the
inclusion induced image of π1(F0) is at least δ(G). Thus we see that X satisfies the FNCA
for δ(X) = δ(G). �

Combining Lemma 3.8 with Theorem 3.3, Proposition 3.4 and Theorem 3.6 we obtain the
following dichotomy for any group of finite type.

Proposition 3.9. Let G be a group of finite type with m = gd(G) and suppose that G has
Property U . Then either

(1) ω(X) = 0 for every G–complex, or

(2) ω(G) ≥ δ(G)
2·Cm .

Proof. If some G–complex X with dim(X) = gd(G) satisfies the FCA, then ω(X) = 0 by
Theorem 3.3. Thus by Proposition 3.4, we get that ω(X) = 0 for every G–complex X and
thus (1) holds.

Else, by Lemma 3.8, every G–complex X with dim(X) = gd(G) satisfies the FNCA with

δ(X) = δ(G). Thus ω(X) ≥ δ(G)
2·Cm by Theorem 3.6. As X is an arbitrary G–complex with

dim(X) = gd(G), we see that (2) holds. �

4. Vanishing Criterion when gd(G) = 2

In this section we prove the first main result of this paper. Theorem 1.3 provides a
characterization for when ω(X) = 0 for every G–complex X, if gd(G) = 2, δ(G) > 0, and the
subexponentially growing subgroups of G belong to the collection {{1},Z,Z2, BS(1,−1)}.
(In particular, such a G has Property U .) Specifically, the minimal volume entropy vanishes
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for each G–complex precisely when G is the fundamental group of a graph of groups where the
edge groups belong to the collection {{1},Z} and the vertex groups belong to the collection
{Z,Z2, BS(1,−1)}. Before we prove this theorem in Section 4.3, we recall the definition
of a graph of groups and set some notation in Section 4.1. Then in Section 4.2, we show
that if a G–complex of minimal dimension satisfies the FCA and gd(G) = 2, then G is
the fundamental group of a graph of groups where the vertex groups and edge groups are
subexponentially growing. We complete the proof of Theorem 1.3 in Section 4.3.

4.1. Graphs of Groups. General references for the material in this section are the works
of Bass [3], Scott–Wall [28], and Serre [29].

A graph of groups consists of the following data.

(1) A finite connected graph Y with vertex set V Y and edge set EY . By o(e) and τ(e) we
denote the originating and terminal vertices of an edge e respectively, and ē denotes
the edge with opposite orientation. We have ¯̄e = e and o(ē) = τ(e).

(2) For each vertex v ∈ V Y , there is an associated group Gv.
(3) For each edge e ∈ EY , there is an associated group Ge. We have Gē = Ge.
(4) For each edge e ∈ EY , there is an injective homomorphism he : Ge → Go(e).

We will denote a graph of groups by G = (Y, {Gv}, {Ge}, {he}).
Associated to a graph of groups G = (Y, {Gv}, {Ge}, {he}) is the fundamental group of the

graph of groups, denoted π1(G). Briefly, it is constructed by repeatedly taking amalgamated
free products and HNN-extensions using the data in G. In more detail, as a generating set
of π1(G) we take the set

{Gv | v ∈ V Y } ∪ {xe | e ∈ EY }.
All of the relations in the vertex groups hold plus some more that use the data in G. To

write down these additional relations for π1(G), we need to fix a maximal tree T ⊆ Y . Using
the tree T , the additional relations for π1(G) are as follows:

xehe(a) = hē(a)xē, for each edge e ∈ EY and element a ∈ Ge = Gē

xexē = 1, for each edge e ∈ EY
xe = 1, for each edge e ∈ ET

The isomorphism type of π1(G) does not depend on the choice of maximal tree T ⊆ Y .
Consider two graphs of groups G = (Y, {Gv}, {Ge}, {he}) and G ′ = (Y ′, {G′v}, {G′e}, {h′e})

where

(1) Y ′ is a subgraph of Y ,
(2) G′v = Gv for each vertex v ∈ V Y ′,
(3) G′e = Ge for each edge e ∈ EY ′, and
(4) h′e = he for each edge e ∈ EY ′.

Then π1(G ′) is isomorphic to a subgroup of π1(G).
Given a graph of groups G = (Y, {Gv}, {Ge}, {he}), there is an associated graph of spaces
X = (Y, {Xv}, {Xe}, {fe}), which is well-defined up to homotopy. For each vertex v ∈ V Y ,
we set Xv = K(Gv, 1). Likewise, for each edge we set Xe = K(Ge, 1) and further we fix a
map fe : Xe → Xv so that (fe)∗ = he. There is an associated space |X |, called the realization
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of the graph of spaces, obtained by gluing the spaces together using the graph Y . Specifically,
we define

|X | =
⋃
v∈V Y

Xv ∪
⋃
e∈EY

Xe × [0, 1]
/

(x, 0) ∈ Xe × [0, 1] ∼ fe(x) ∈ Xo(e) and
(x, 1) ∈ Xe × [0, 1] ∼ (x, 1) ∈ Xē × [0, 1]

We have that π1(|X |) ∼= π1(G).
Let G = (Y, {Gv}, {Ge}, {he}) be a graph of groups. Suppose that e0 is an edge in Y

so that o(e0) 6= τ(e0), i.e., e0 is not a loop. If the inclusion map he0 : Ge0 → Go(e0) is an
isomorphism, then we say that the edge e0 is collapsible. In this case, we may collapse e0

and obtain a new graph of groups G ′ = (Y ′, {G′v}, {G′e}, {h′e}). The underlying graph Y ′

is obtained by removing the edge e0 from Y and identifying the vertices o(e0) and τ(e0);
we denote this image of these vertices by v′ and define G′v′ = Gτ(e). All other vertices and
edges of Y ′ correspond to a vertex or edge of Y and we define the vertex group G′v or edge
group G′e accordingly. As the map he0 : Ge0 → Go(e0) is an isomorphism, we can consider
Go(e0) as a subgroup of Gτ(e0) via hē0h

−1
e0

. Thus for an edge e in Y where o(e) = o(e0),
the injective homomorphism he : Ge → Go(e) naturally defines an injective homomorphism
h′e : G′e → G′o(e). For all other edges, we have that h′e = he. We say that G ′ is obtained from

G by collapsing the edge e. This does not change the fundamental group, i.e., π1(G) ∼= π1(G ′).
This follows because of the isomorphism A ∗C C ∼= A.

If no edge of Y is collapsible, we say that G is reduced. If G is not reduced, we may repeat-
edly collapse edges to obtain a reduced graph of groups decomposition whose fundamental
group is π1(G).

There is a correspondence between decompositions of G as a graphs of groups, i.e., isomor-

phisms G ∼= π1(G), and actions of G on simplicial trees Ỹ . In this correspondence, the vertex
groups and edge groups of G correspond to the conjugacy classes of the vertex stabilizers

and edge stabilizers respectively for the action of G. The underlying graph of G is G\Ỹ .

4.2. FCA induces a graph of groups decomposition. We will now show how the FCA
induces a graph of groups decomposition when gd(G) = 2.

Proposition 4.1. Suppose that G is a group with gd(G) = 2. If X is a G–complex with
dim(X) = 2 and X satisfies the FCA, then G is isomorphic to the fundamental group of a
graph of groups where the vertex groups and the edge groups are subexponentially growing.

Proof. Let G be as in the statement and let X be a G–complex that satisfies the FCA. Hence,
there is a graph Γ and a simplicial map f : X → Γ with connected fibers such that for each
x ∈ Γ, the image of π1(Fx) in π1(X) has subexponential growth where Fx = f−1(x).

The function f : X → Γ induces a graph of groups decomposition of G as in the statement
of the proposition as we now recall. For further details, we refer the reader to the work of

Dunwoody [15]. For each edge e of Γ, fix a point xe in the interior of the edge. Let X̃ be

the universal cover of X and let p : X̃ → X be the covering map. We consider the lift of the

fibers Fxe to X̃ and define

E = ∪{π0(p−1(Fxe)) | e is an edge of Γ} and V = π0(X̃ − ∪{ε | ε ∈ E}).
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For each ε ∈ E , there are exactly two components in V whose closures in X̃ contain ε.
Therefore, in the obvious way, we get a graph T with vertices V and edges E . The graph T

is clearly connected and as each ε ∈ E separates X̃, we see that T is a tree.
The stabilizer of a component in E is a conjugate of the image of π1(Fxe) in π1(X) for

some edge e of Γ. Given a component c ∈ V , the subset p(c) deformation retracts onto Fv
for some vertex v of Γ. Hence the stabilizer of a component in V is a conjugate of the image
of π1(Fv) in π1(X) for some vertex v of Γ.

Therefore G acts on a tree where the stabilizer of any point is subexponentially grow-
ing. As stated in Section 4.1, by Bass–Serre theory this implies that G is isomorphic to
the fundamental group of a graph of groups where the vertex groups and edge groups are
subexponentially growing. �

4.3. Proof of Theorem 1.3. Before can prove Theorem 1.3, we need a lemma that shows
that certain subgroups are prohibited in groups with gd(G) = 2.

Lemma 4.2. Suppose that H1, H2 and K belong to the collection {Z2, BS(1,−1)}. The
geometric dimension of an amalgamated free product H1 ∗KH2 is equal to 3 if both inclusions
are proper. The geometric dimension of an HNN-extension H1∗K is equal to 3.

Proof. Let H1, H2 and K be as in the statement. For each of H1 ∗K H2 and H1∗K , the
respective graphs of spaces using S1×S1 for each Z2 and the Klein bottle for each BS(1,−1)
are aspherical and have dimension equal to 3. Thus gd(H1 ∗K H2) ≤ 3 and gd(H1∗K) ≤ 3.

The cohomological dimension of H1 ∗K H2 is equal to 3 if both inclusions are proper.
Likewise, the cohomological dimension H1∗K is equal to 3. See the work of Bieri [6, Corol-
laries 6.5 and 6.7] for complete details. As the geometric dimension is bounded from below
by the cohomological dimension, the result follows. �

Proof of Theorem 1.3. Suppose that G is a group with gd(G) = 2, δ(G) > 0, and that every
subexponentially growing subgroup belongs to the collection {{1},Z,Z2, BS(1,−1)}.

First, we assume that ω(X) = 0 for every G–complex X. As δ(G) > 0, by Theorem 3.6
and Lemma 3.8 there is some G–complex X that satisfies the FCA. Therefore by Propo-
sition 4.1 we have that G is isomorphic to the fundamental group of a graph of groups
G = (Y, {Gv}, {Ge}, {he}) with subexponentially growing vertex groups and edge groups.
By collapsing any collapsible edges, we may assume that G is reduced.

If Gv is trivial for some vertex v ∈ V Y , then every edge incident on v is a loop as G is
reduced. This implies that G ∼= π1(G) is a free group. This is contrary to the assumption
that gd(G) = 2. Hence the vertex groups of G belong to the collection {Z,Z2, BS(1,−1)}.

By Lemma 4.2, the groups Z2 and BS(1,−1) cannot appear as edge groups since G is
reduced and gd(G) = 2. Thus, the edge groups of G belong to the collection {{1},Z}.

Next, we assume that G is isomorphic to the fundamental group of a graph of groups
G = (Y, {Gv}, {Ge}, {he}) where vertex groups belong to the collection {Z,Z2, BS(1,−1)}
and the edge groups belong to the collection {{1},Z}. Let X = (Y, {Xv}, {Xe}, {fe}) be
the corresponding graph of spaces built using a point, S1, S1 × S1 and the Klein bottle
respectively for each {1}, Z, Z2 and BS(1,−1) respectively. Then |X | is a G–complex with
dim(|X |) = 2 = gd(G) and there is a map p : |X | → Y where each of the fibers either a point,
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S1, S1 × S1 or BS(1,−1). This shows that |X | satisfies the FCA and hence ω(|X |) = 0 by
Theorem 3.3. By Proposition 3.4, we conclude that ω(X) = 0 for every G–complex X. �

5. Free-by-cyclic groups

In this section we examine the minimal volume entropy of free-by-cyclic groups and prove
Theorem 1.1. To prove this theorem we must show that the following three statements are
equivalent for a free-by-cyclic group Gφ.

(1) ω(X) = 0 for every Gφ–complex X.
(2) Gφ is virtually tubular.
(3) Some power of φ is geometrically linear unipotent power.

First we prove that (1) implies (3) in Proposition 5.7. This takes place in Section 5.2 after
we formally define a geometrically linear unipotent outer automorphism. Following this,
in Section 5.3 we complete the proof of Theorem 1.1 by showing that (3) implies (2) and
observing that (2) implies (1) by Theorem 1.3 and Proposition 2.5.

Before we begin the proof of Theorem 1.1, in Section 5.1 we classify subexponentially
growing subgroups of free-by-cyclic groups and show that free-by-cyclic groups have uniform
uniform exponential growth (with a uniform constant).

5.1. Growth of subgroups of free-by-cyclic groups. Let φ be an outer automorphism
of a finitely generated free group Fn and let Gφ be the corresponding free-by-cyclic group.

Lemma 5.1. Any nontrivial finitely generated subgroup of Gφ with subexponential growth is
isomorphic to Z, Z2 or BS(1,−1).

Proof. Write Gφ = Fn oΦ Z where Φ ∈ Aut(Fn) represents the outer automorphism φ and
let π be the projection onto the cyclic factor.

Let H be a nontrivial finitely generated subgroup of Gφ that has subexponential growth.
As H is nontrivial and has subexponential growth, H ∩ Fn is either trivial or isomorphic
to Z. If H ∩ Fn is trivial, then π maps H injectively to Z hence H ∼= Z. Otherwise, we
have that H ∩ Fn = 〈a〉 for some nontrivial a ∈ Fn. If π(H) is trivial then H = 〈a〉 ∼= Z.
Otherwise, let h be an element of H that generates π(H) ∼= Z. Then b = hah−1 ∈ H ∩ Fn
and so b = a or b = a−1. As h generates π(H), this implies that H ∼= Z2 in the case b = a
and that H ∼= BS(1,−1) in the case b = a−1. �

Lemma 5.2. Suppose H is a finitely generated subgroup of Gφ that is exponentially growing.
Then δ(H) ≥ 1

6
log 3. In particular, δ(Gφ) ≥ 1

6
log 3.

Proof. Write Gφ = Fn oΦ Z where Φ ∈ Aut(Fn) represents the outer automorphism φ.
Suppose H is a finitely generated subgroup of Gφ with exponential growth and let S be

a finite generating set for H. The commutator subgroup [H,H] is contained in Fn and is
normally generated by C = {[si, sj] | si, sj ∈ S}. As H has exponential growth we must
have that [H,H] is nontrivial.

Suppose that [H,H] = 〈c〉 is infinite cyclic, generated by some element c ∈ Fn. If so, there
is a short exact sequence

1→ 〈c〉 → H → A→ 1
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where A is a finitely generated abelian group. In particular, an index two subgroup of H is
nilpotent. This implies that H has subexponential growth, contrary to our hypothesis.

Therefore, [H,H] is not cyclic and hence free and nonabelian. Thus we can find two
elements of [H,H] of length at most 6 (we may have to conjugate some [si, sj] by an element
of S) that generate a group isomorphic to F2, so δ(H,S) ≥ 1

6
log 3.

As S was an arbitrary generating set for H, we have δ(H) ≥ 1
6

log 3. �

Lemmas 5.1 and 5.2 show that free-by-cyclic groups have Property U .

5.2. Geometrically linear unipotent outer automorphisms. In this section we will
define a geometrically linear unipotent outer automorphism of a free group and prove that if
ω(X) = 0 for every Gφ–complex X, then some power of φ is geometrically linear unipotent.

Definition 5.3. A primitive free splitting of Fn is a graph of groups decomposition of Fn
where each vertex group is Z and each edge group is trivial.

Given a primitive free splitting of Fn, F = (Y ′, {Fv}, {Fe}, {ie}), a model for the corre-
sponding graph of spaces is obtained by attaching a loop edge αv to each vertex v ∈ V Y ′.
We will denote this graph by K(F). By choosing a maximal tree T ⊆ Y ′ (equivalently a
maximal tree in K(F), and fixing generators av ∈ Fv, a subset E+(Y ′ − T ) ⊂ EY ′ − ET
that contains one edge from each pair {e, ē} ⊆ EY ′ − ET and a vertex v0 ∈ V Y ′, the set

{av | v ∈ V Y ′} ∪ {xe | e ∈ E+(Y ′ − T )}
is a basis for Fn via the isomorphism Fn ∼= π1(K(F), v0).

Definition 5.4. An outer automorphism φ ∈ Out(Fn) is geometrically linear unipotent
(GLU) if there is a representative Φ ∈ Aut(Fn), a primitive free splitting of Fn, F =
(Y ′, {Fv}, {Fe}, {ie}) of Fn, a maximal tree T ⊆ Y ′ and vertex v0 ∈ V Y ′ such that the
following holds.

(1) For every e ∈ ET where o(e) lies between v0 and τ(e), there is an integer pe.
(2) For each v ∈ V Y ′, Φ(av) = wvavw

−1
v where (e1, e2, . . . , em) is the minimal length edge

path in T from v0 to v and

wv = a
pe1
o(e1)a

pe2
o(e2) · · · a

pem
o(em).

(3) For each e ∈ E+(Y ′ − T ), Φ(xe) = wo(e)a
qe
o(e)xea

re
τ(e)w

−1
τ(e) for some qe, re ∈ Z.

Example 5.5. Consider the primitive free splitting of F3 = 〈a, b, c〉, where the underlying
graph has two vertices v1, v2 and two (geometric) edges e1, e2 where o(e1) = τ(e2) = v1 and
τ(e1) = o(e2) = v2, and where the vertex groups are Fv1 = 〈a〉 and Fv2 = 〈b〉. Let T be the
single edge e1. See Figure 1 below.

Fix integers p, q, and r. The automorphism

Φ(a) = a; Φ(b) = apba−p; Φ(c) = apbqcar

represents a GLU outer automorphism.

Remark 5.6. From the definition, we see that GLU outer automorphisms are linearly grow-
ing. Moreover, there exists a topological representative f : K(F)→ K(F) for φ defined by
the following.
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〈a〉 〈b〉 a b

Figure 1. The primitive free splitting of Example 5.5 is shown on the left,
and its associated geometric realization on the right. The tree T is colored in
red.

(1) For every v ∈ V Y ′, f(αv) = αv.
(2) For every e ∈ ET where o(e) lies between v0 and τ(e), f(e) = αpeo(e)e.

(3) For every e ∈ E+(Y ′ − T ), f(e) = αqeo(e)eα
re
τ(e).

Conversely, any outer automorphism that has such a geometric representative is GLU.

Thus, each GLU automorphism has a geometric representative of a highly restrictive form.
In the action of a GLU automorphism on the abelianization of Fn, it will be represented by
a linearly growing unipotent matrix. Of course, not every automorphism with this property
will be GLU. The terminology geometrically linear unipotent is meant to indicate that even
on the level of homotopy the automorphism resembles a linear unipotent automorphism.

Proposition 5.7. If ω(X) = 0 for every Gφ–complex X, then some power of φ is geomet-
rically linear unipotent.

Proof. Write Gφ = FnoΦ Z = 〈Fn, t | tat−1 = Φ(a), ∀a ∈ Fn〉 where Φ ∈ Aut(Fn) represents
the outer automorphism φ. Suppose that ω(X) = 0 for every Gφ–complex X. We will show
that the automorphism obtained by replacing Φ with a power and composing the result
by an inner automorphism satisfies the conditions in Definition 5.4. On the level of the
presentation, this is accomplished by replacing t with atk for some k ∈ Z and a ∈ Fn.

As gd(Gφ) = 2, Lemmas 5.1 and 5.2 show that we may apply Theorem 1.3 to Gφ. Since Gφ

is 1–ended, Theorem 1.3 yields a graph of groups decomposition G = (Y, {Gv}, {Ge}, {he})
of Gφ where all vertex groups belong to the collection {Z,Z2, BS(1,−1)} and every edge
group is equal to Z. We may assume that G is reduced.

Let Ỹ be the tree corresponding to the decomposition Gφ
∼= π1(G), so that Gφ\Ỹ = Y .

The normal subgroup Fn ⊂ Gφ acts on Ỹ and the quotient Y ′ = Fn\Ỹ yields a graph of
groups decomposition F = (Y ′, {Fv}, {Fe}, {ie}) of Fn. Let π : Y ′ → Y be the quotient map
induced the action of 〈t〉. Following an observation of Brinkmann [7], we claim:

Claim 5.8. The graph Y ′ is finite, each vertex group Fv belongs to the collection {{1},Z}
and each edge group Fe is trivial.

Indeed, the quotient map π induces an injection on edge and vertex groups. In particular,
as F is a decomposition of Fn and all vertex groups in G are either Z, Z2 or BS(1,−1), we
must have that each vertex group of F is either Z or trivial.

For any edge e of Y , the map ρe : Y → Ye that collapses the components of the complement
of e induces a graph of groups decomposition Ge for Gφ with a single edge where the edge

group is Z, i.e., a splitting over Z. That is, there is a tree Ỹe and Gφ–equivariant map

ρ̃e : Ỹ → Ỹe with connected fibers inducing the map ρe on quotients where Gφ\Ỹe consists
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of a single edge. In particular, the edge group of e is the same in either graph of groups.
Brinkmann showed that for any splitting of a free-by-cyclic group over Z, the induced graph
of groups decomposition on Fn, Fe = (Y ′e , {F ′v}, {F ′e}, {i′e}) has Y ′e a finite graph and F ′e = {1}
for each edge [7, Section 1]. Therefore for each e we have a pullback square

Y ′
π
//

ρ′e
��

Y

ρe
��

Y ′e πe
// Ye

The map ρ′e : Y ′ → Y ′e collapses the components of the complement of π−1(e). As above,
the edge groups for Fe are the same as the corresponding edge groups in F . Hence the edge
group for an edge in π−1(e) is trivial. As e was arbitrary, this shows that the edges groups
in F are all trivial. Further, as Y ′e is a finite graph, we see that π−1(e) consists of finitely
many edge for any edge e of Y . This shows that Y ′ is a finite graph. This proves the claim.

Since Y ′ is finite, the stable letter t acts on Y ′ by a finite order automorphism. Thus some
power of t, tk, acts as the identity on Y ′ and also on each vertex group Fv since each such
group has at most two automorphisms. We replace Gφ with the finite index subgroup Gφk .

For the action of Gφ on Ỹ we now have that Gφ\Ỹ = Y ′ = Fn\Ỹ . We continue to denote
the graph of group decomposition of Gφ by G.

The graph of groups decomposition F may not be reduced. As t acts trivially on Y ′, if an
edge e is collapsible for F , it is also collapsible for G. This follows as the Gφ–stabilizer of an

edge in Ỹ is generated by at for some a ∈ Fn since t acts as the identity on Y ′ and such an
element does not have a proper root. Therefore, we may collapse edges in Y ′ so that F is
reduced. We will continue to denote by Y ′ the underlying graph.

If Y ′ has a single vertex v and Fv is trivial, then we collapse one of the incident loops and
change the vertex group to Z. Hence Fv = Z for all v ∈ Y ′ and Fe = {1} for all e ∈ EY ′. In
other words, F is a primitive free splitting.

Let T ⊆ Y ′ be a maximal tree. Choose a basepoint v0 ∈ T and fix a subset E+(Y ′−T ) ⊂
EY ′ − ET that contains one edge from each pair {e, ē}. A lift T̃ ⊆ Ỹ of T , determines for

each v ∈ T̃ an element av that generates Fv. For each e ∈ E+(Y ′−T ) we obtain a hyperbolic

element xe ∈ Fn that identifies an edge ẽ1—which is a lift of e—at the lift of o(e) in T̃ , with

an edge ẽ2—which is also a lift of e—at the lift of τ(e) in T̃ . See Figure 2.

Since t acts trivially on Y ′, for every point x ∈ Ỹ , there exists g ∈ Fn such that (gt).x = x.

In particular, for each vertex ṽ ∈ T̃ , we can find gv ∈ Fn such that (gvt).ṽ = ṽ. By the
choice of t, this implies that (gvt)av(gvt)

−1 = av for all v, or in other words, that all vertex
stabilizers are Z2. Moreover, replacing t with gv0t, we may assume the stabilizer of ṽ0 is
〈a0, t〉.

Let γv = (e1, . . . , em) be the minimal length edge path in T from v0 to v. We claim that
there exists integers pe such that for the word wv = a

pe1
o(e1)a

pe2
o(e2) · · · a

pem
o(em) we have t.ṽ = wv.ṽ.

Note, the integers pe only depend on the edges and not the vertex v. We prove this by
induction on m + 1 ≥ 0, where wv0 is understood to be trivial. In the base case, we have
already chosen t so that t.ṽ0 = ṽ0. Suppose now that the claim holds for some m ≥ 0, and
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ẽ2

ẽ1

xe

Figure 2. The lifts ẽ1 and ẽ2 of e ∈ E+(Y ′ − T ) are identified by the hyper-
bolic translation xe. The axis for the action of xe is shown in blue, while a

portion of T̃ is shown in red.

that γv has length m+1. Then removing the last edge of γv is the path from v to vm, so there
exist integers pe such that for the word wvm = a

pe1
o(e1)a

pe2
o(e2) · · · a

pem−1

o(em−1) we have t.ṽm = wvm .ṽm.

Let ẽ be the lift of em, which is the final edge of γv, to T̃ . Since w−1
vmt fixes ṽm, there is some

power a−pevm such that a−pevm (w−1
vmt).ẽ = ẽ. Thus, t.ẽ = (wvma

pe
vm).ẽ and hence

t.ṽ = (wvma
pem
o(em)).ṽ = (a

pe1
o(e1) · · · a

pem−1

o(em−1)a
pem
o(em).ṽ,

as desired. It follows that for each v, (w−1
v t)av(t

−1wv) = av. Hence, tavt
−1 = wvavw

−1
v . This

proves that the t-action on the basis elements av has the form indicated in Definition 5.4.

Consider now an edge e ∈ E+(Y ′ − T ) and let ṽ1 and ṽ2 be the lifts to T̃ of the vertices
v1 = o(e) and v2 = τ(e) respectively. There are lifts ẽ1 and ẽ2 of e where o(ẽ1) = ṽ1 and
τ(ẽ2) = ṽ2 and such that xe.ẽ1 = ẽ2. Since w−1

v1
t fixes ṽ1, there exists a power a−qev1

such that
(a−qev1

w−1
v1
t).ẽ1 = ẽ1. Similarly, there exists a power arev2

such that (arev2
w−1
v2
t).ẽ2 = ẽ2. Then we

obtain (
(t−1wv1a

qe
v1

)xe(a
re
v2
w−1
v2
t)
)
.ẽ1 = xe.ẽ2

Since edge stabilizers for the Fn–action are trivial we have that xe is the unique element of
Fn taking ẽ1 to ẽ2. Hence, recalling that v1 = o(e) and v2 = τ(e), we conclude that

txet
−1 = wo(e)a

qe
o(e)xea

re
τ(e)w

−1
τ(e).

As explained in the beginning of the proof, this shows that some power of φ is geometrically
linear unipotent. �

5.3. Proof of Theorem 1.1. There are two items left to show for Theorem 1.1. We must
show that if some power of an outer automorphism is geometrically linear unipotent (3),
then Gφ is virtually tubular (2) and that if Gφ is virtually tubular 92), then ω(X) = 0
for every Gφ–complex X (1). Additionally, we must show that if none of these conditions
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holds that ω(Gφ) is bounded away from zero. This last statement follows immediately from
Proposition 3.9 and Lemma 5.2.

Proof of Theorem 1.1. First we show that (3) implies (2). Replacing φ with a power replaces
Gφ with a finite-index subgroup. We will therefore assume φ is itself GLU, and prove that
in this case Gφ is tubular. Let F , T ⊆ Y ′, v0 ∈ T and Φ be as in Definition 5.4. These data
give us a basis {av, xe}, where v ∈ V Y ′ runs over the vertex set of Y , and e ∈ E+(Y ′ − T )
runs over the edges in the complement of the maximal tree T .

First we show that the subgroup G0 = 〈t, av | v ∈ V Y ′〉 is tubular. For each av we have
tavt

−1 = Φ(av) = wvavw
−1
v . Rearranging we obtain

(w−1
v t)av(t

−1wv)a
−1
v = [w−1

v t, av] = 1,

or in other words 〈av, w−1
v t〉 ∼= Z2. Let γv = e1, . . . , em be the minimal length edge path from

v0 to v in T . The condition that φ is GLU states that

wv = a
pe1
o(e1) · · · a

pem
o(em) = wv′a

pem
v′ ,

for some collection of integers pe depending only on the edge e, and where v′ = o(em). In
particular, w−1

v t ∈ 〈av′ , w−1
v′ t〉. We then build a graph of groups decomposition with graph

T , vertex groups 〈av, w−1
v t〉 and edge groups Z: the edge between v and v′ identifies 〈w−1

v t〉
in each. Thus G0 is tubular.

To finish the proof, we show that adding the elements xe for each e ∈ E+(Y ′−T ) exhibits
Gφ as an iterated HNN-extension of G0 over Z edge groups. Each extension is independent
for the others, so that the result is tubular. For each element xe, we have txet

−1 = Φ(xe) =
wo(e)a

qe
o(e)xea

re
τ(e)w

−1
τ(e), or written differently:

xe

(
areτ(e)w

−1
τ(e)t

)
x−1
e = w−1

o(e)a
−qe
o(e)t

Clearly, areτ(e)w
−1
τ(e)t ∈ 〈aτ(e), w

−1
τ(e)t〉 while w−1

o(e)a
−qe
o(e)t ∈ 〈ao(e, w

−1
o(e)t〉. We see that the addition

of each edge e ∈ E+(Y ′−T ) adds a generator conjugating an infinite cyclic subgroups of the
τ(e) vertex group to one of the o(e) vertex group. Hence Gφ is tubular.

Next, we observe that (2) implies (1). If Gφ is virtually tubular, then by Lemma 2.2, after
passing to a tubular finite index subgroup, we have that ω(X) = 0 for every Gφ–complex by
Theorem 1.3 as δ(Gφ) > 0 (Lemma 5.2).

Finally, by Proposition 3.9 and Lemma 5.2, if ω(X) 6= 0 for some Gφ–complex X then

ω(Gφ) ≥ δ(Gφ)

2 · 106
=

log 3

12 · 106
. �

6. 2–Dimensional right-angled Artin groups

In this section we consider 2–dimensional right-angled Artin groups and prove Theo-
rem 1.2. This theorem asserts the equivalence of the following three conditions for a 2–
dimensional right-angled Artin group AΓ.

(1) ω(X) = 0 for every AΓ–complex X.
(2) AΓ is a free product of tubular groups and a free group.
(3) Γ is a forest.
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The equivalence of (1) and (2) will follow from Theorem 1.3. Indeed, that (1) is a consequence
of (2) follows immediately from Theorem 1.3 once we show that δ(H) ≥ log 3 for a nonabelian
subgroup of a right-angled Artin group (Lemma 6.2). For the converse, we will show how to
modify the graph of groups decomposition ensured by Theorem 1.3 when ω(X) = 0 for every
AΓ–complex X in Lemma 6.3 to get the requirements on the vertex groups. In Lemmas 6.4
and 6.5 we establish the equivalence of (2) and (3). Before we prove these lemmas, we recall
a theorem of Baudisch regarding subgroups of a right-angled Artin group generated by two
elements which is important for our analysis.

6.1. Baudisch’s theorem and consequences. Baudisch proved that the subgroup gen-
erated by two elements in a right-angled Artin group is either free or abelian [4]. We record
two consequences of this fact.

Lemma 6.1. Groups in the follow classes are not isomorphic to a subgroup of a right-angled
Artin group:

(1) Baumslag–Solitar groups BS(p, q) = 〈a, t | tapt−1 = aq〉 if p, q 6= 1,
(2) torus knot groups Z ∗Z Z = 〈x, y | xp = yq〉 if p 6= 1 or q 6= 1, and
(3) amalgamated free products Z ∗Z Z2 = 〈x, y, z | xp = w(y, z), yz = zy〉 where w(y, z)

is a nontrivial element of the subgroup 〈y, z〉 ∼= Z2 if p 6= 1.

Proof. The first two classes are immediate since they are generated by two elements and
are neither free nor abelian. For the third class of groups, notice that either w(y, z) 6= y
or w(y, z) 6= z. Hence one of the subgroups 〈x, y〉 or 〈x, z〉 is neither free nor abelian if
p 6= 1. �

Another consequence of Baudisch’s theorem is that right-angled Artin groups have uniform
uniform exponential growth (with a uniform constant).

Lemma 6.2. Let AΓ be a right-angled Artin group. Suppose H is a finitely generated
nonabelian subgroup of AΓ. Then δ(H) ≥ log 3. In particular, if AΓ is nonabelian, then
δ(AΓ) ≥ log 3.

Proof. Suppose AΓ is a right-angled Artin group and that H is a finitely generated nonabelian
subgroup of AΓ. Let S be a finite generating set for H. As H is nonabelian, there are two
element x, y ∈ S that do not commute. Hence as x and y do not commute, they must
generate a nonabelian free group by Baudisch’s theorem and therefore δ(H,S) ≥ log 3. �

In particular, any subexponentially growing subgroup of a right-angled Artin group is
abelian and hence right-angled Artin groups have Property U .

6.2. Proof of Theorem 1.2. We can now prove the lemmas showing the equivalences of
the three items in Theorem 1.2.

Lemma 6.3. Suppose that AΓ is a right-angled Artin group with gd(AΓ) = 2. If ω(X) = 0
for every AΓ–complex X, then AΓ is a free product of tubular groups and a free group.

Proof. Let AΓ be a right-angled Artin group where gd(AΓ) = 2 and let X be an AΓ–complex
where ω(X) = 0. As BS(1,−1) is not isomorphic to a subgroup of AΓ (Lemma 6.1)
by Theorem 1.3 we have that AΓ is the fundamental group of a graph of groups G =
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(Y, {Gv}, {Ge}, {he}) where the edge groups belong to the collection {{1},Z} and the vertex
groups belong to the collection {Z,Z2}.

As in the proof of Theorem 1.3, we may assume that G is reduced. We will show that by
altering G that we can arrange that all of the vertex groups are Z2. This will complete the
proof of the lemma.

To this end, suppose that there is a vertex v in Y with Gv = Z. Further suppose that
there is an e with o(e) = τ(e) = v and Ge = Z. Then vertex v and edge e correspond to an
HNN-extension Z∗Z ∼= BS(p, q). By Lemma 6.1, we must have p = q = 1. Hence, we can
remove the edge e and replace the vertex group Gv with Z2.

Next suppose that for every edge e with o(e) = v we have Ge = {1}. In this case, we can
add a new edge e′ that is a loop based at v with group Ge′ = {1} and replace the vertex
group Gv with {1}. The resulting graph of groups is not reduced. Indeed, if it were then
every edge incident on v is loop which implies that AΓ is free. Thus, there is some edge
incident to v that is collapsible. When we collapse this edge we obtain a reduced graph
of groups decomposition for AΓ which has fewer vertices with vertex group Z and has not
created a vertex with vertex group {1}.

Finally, we deal with the case that there are no loops at v with edge group equal to Z and
that there is an edge e with o(e) = v such that Ge = Z. Then the subgroup Go(e) ∗Ge Gτ(e) is
either a torus knot group Z∗ZZ or an amalgamated free product Z∗ZZ2. By Lemma 6.1, we
must have that he : Ge → Go(e) or hē : Ge → Gτ(e) is surjective, contradicting the assumption
that the graph of groups decomposition is reduced. �

Lemma 6.4. Suppose that AΓ is a right-angled Artin group with gd(AΓ) = 2. If AΓ is a free
product of tubular groups and a free group, then Γ is a forest.

Proof. Let AΓ be a 2–dimensional right-angled Artin group and suppose that AΓ
∼= G1 ∗ · · · ∗

Gk ∗ Fn where G1, . . . , Gk are tubular groups and Fn is a free group. As tubular groups are
one-ended, this decomposition must be the Grusko decomposition and thus we must have
that Gi

∼= AΓi for i = 1, . . . , k where Γ1, . . . ,Γk are the connected components of Γ that have
at least two vertices. Therefore, it suffices to show that if Γ is connected and AΓ is tubular,
then Γ is a tree.

To this end, suppose that we have a graph of groups decomposition of AΓ where each
edge group is Z and each vertex groups is Z2. We will use the calculation of the the JSJ–
decomposition of a one-ended right-angled Artin group over cyclic subgroups by the second
author [10, Section 3]. The vertex groups of the JSJ–decomposition of AΓ correspond to the
biconnected components of Γ. Specifially, vertex groups are of the form AΓ0 where Γ0 ⊆ Γ
is a biconnected component. The most important property of this decomposition is that
the vertex groups are subgroups of conjugates of the vertex groups for any graph of groups
decomposition of AΓ in which the edge groups are each equal to Z [10, Lemma 3.3]. Hence
AΓ0 = Z2 for each biconnected component Γ0 ⊆ Γ and thus every biconnected component is
a single edge. Therefore every edge of Γ is separating and hence Γ is a tree. �

Lemma 6.5. Suppose that AΓ is a right-angled Artin group with gd(AΓ) = 2. If Γ is a
forest, then AΓ is the free product of tubular groups and a free group.
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Proof. As in the proof of Lemma 6.4, it suffices to show that if Γ is a nontrivial tree, then
AΓ is tubular. We do so by showing that AΓ is the fundamental group of a graph of groups
G = (Y, {Gv}, {Ge}, {he}) where all of edges groups are equal to Z and all of the vertex
groups are equal to Z2.

Let Ŷ by the graph obtained by subdivision of Γ. We will first construct a graph of groups

Ĝ with underlying graph Ŷ so that π1(Ĝ) = AΓ. As Ŷ is the subdivision of Γ, we can

consider V Γ as a subset of V Ŷ . For each vertex v ∈ V Γ we set Gv = Z and for each vertex
v ∈ V Ŷ − V Γ we set Gv = Z2. In the latter case, there are exactly two edges e, e′ ∈ EŶ
with o(e) = o(e′) = v. Decompose Ge into the direct sum of two copies of Z denoted Ze
and Ze′ respectively so that Gv = Ze ⊕ Ze′ . For each edge e ∈ EŶ we set Ge = Z. The
inclusion maps he : Ge → Go(e) are defined as follows. If o(e) lies in V Γ, then Go(e) = Z and
we define he : Ge → Go(e) to be an isomorphism. Else we have that Go(e) = Z2 = Ze ⊕ Ze′
and we define hE : Ge → Go(e) to have Ze as image. We set Ĝ to be the graph of groups

(Ŷ , {Gv}, {Ge}, {he}).
As Γ is a tree, the presentation for π1(Ĝ) shows that π1(Ĝ) ∼= AΓ.

Notice that Ĝ is not reduced. Indeed, for every vertex in V Γ, there is an incident edge
that is not a loop and for which the inclusion map is an isomorphism. For each vertex in
V Γ, we fix one such edge and perform the collapse. Let G = (Y, {Gv}, {Ge}, {he}) be the
resulting graph of groups. We then observe that the vertex set V Y corresponds the set set

V Ŷ − V Γ and hence Gv = Z2 for each vertex v ∈ V Y . The edge groups do not change and

hence Ge = Z for each edge e ∈ EY . As π1(G) = π1(Ĝ) ∼= AΓ, we have shown that AΓ is
tubular. �

Proof of Theorem 1.2. Let AΓ be a right-angled Artin group where gd(AΓ) = 2.
The equivalences of items (1) and (2) follow from Theorem 1.3 and Lemmas 6.2 and 6.3.

The equivalences of items (2) and (3) follow immediately from Lemmas 6.4 and 6.5.
Finally, by Proposition 3.9 and Lemma 6.2, if ω(X) 6= 0 for some AΓ–complex X then

ω(AΓ) ≥ δ(AΓ)

2 · 106
=

log 3

2 · 106
. �
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