{?*-HOMOLOGY OF THE FREE GROUP
MATT CLAY

ABSTRACT. We analyze the reduced £*>~homology groups of a finitely
generated nonabelian free group, F. Specifically, the projection map
onto the space of harmonic £>-1-chains is explicitly described and a
weak isomorphism from (¢£*(F))™ -1 to the space of harmonic £>~1-
chains is given.

In these notes we collect several calculations regarding the £?~homology
of a finitely generated nonabelian free group. In some places more details
regarding standard arguments are provided but no originality is claimed
for any of the following material, except for errors.

I became interested in {?~homology through Mineyev’s proof of the
Hanna Neumann conjecture [6]; see also [5] for a proof avoiding £*~homology.
In an attempt to understand the tools and techniques of the {*~theory ap-
plied to discrete groups I wanted to see a calculation of the {*~Betti num-
bers for a free group using the definition of the von Neumann dimension
(this definition appears in Section 3.2). The most direct calculation uses
additivity properties of the von Neumann dimension and the Euler char-
acteristic of the free group (this argument appears in Section 3.5). As I
was unable to find a calculation using the definition of the von Neumann
dimension, I decided to write these notes.

There are excellent surveys of {*~homology of discrete groups by Eck-
mann [1] and Lick [3]. Additionally, Liick’s book [4] is a very thorough
reference on the subject.

I would like to thank Andy Raich for discussions that inspired me to
write these notes and to the anonymous referee whose suggestions im-
prove the exposition.

1. PRELIMINARIES

Let [ be a free group with finite rank at least two, denoted rk(F). We de-
note the identity element of F by 1. The Hilbert space of square-summable
functions f: F — C is denoted ¢*(F). The inner product on ¢*(F) is given

The author is partially supported by the Simons Foundation.
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The dense subset of finitely supported functions is isomorphic (as a vector
space) to the group algebra C[F]. As such, we consider an element g € F
as the element of C[[F] c ¢*(F) that is the unit function that takes value 1
on g and o elsewhere. The group F acts on both the left and on the right
of £*(F) by:

(9- F)(h) = f(g~*h) and (f - g)(h) = f(hg™")

These extend to left and right actions of C[F] by bounded operators. The
adjoint of the operator associated to a € C[F] is the corresponding action
by the conjugate a € C[F], where for f € ¢*(F) we define J_‘(g) = f(g™).

We fix a basis X C [F that we will use for the remainder. We denote
the Cayley graph of F with respect to X by T = Ty and we denote the
word length of g € F with respect to X by |g| = |g|s. The set of edges in
T is denoted by E = E(T) and the set of vertices by V = V(T). We recall
the construction of the Cayley graph for the convenience of the reader.
Vertices of T correspond to group elements in [F; the vertex of T corre-
sponding to g € [ is denoted by v,. There in an edge e € E with initial
vertex d,(e) = vy and terminal vertex d,(e) = v, if h™'g € X, ie, g = hx
for some x € X. The group [ acts on the left by gvy, = vgp,. For x € X, we
let & be the edge with endpoints d,(ex) = v1 and 9,(ex) = vx and we set
Eqy = {&x € E| x € L}. Since X is a basis, the Cayley graph T is a tree.
The local structure of T is shown in Figure 1.

The Hilbert space of square-summable functions a: E — C is denoted
by €*(E). As for £*(F), we will consider an edge e € E as the unit func-
tion in £?(E) that takes value 1 on e and o elsewhere. The span of these
functions is dense in ¢*(E) and denoted C[E]. Similarly, the Hilbert space
of square-summable functions f: V' — C is denoted by ¢*(V). Again,
we will consider vertices as unit functions in £*(V) and denote the span of
these functions by C[V]. There is a left action by [ on both ¢*(E) and £*(V)
defined analogously to the action on £*(F): act on the input by the inverse.
We remark that the left F-action on e € ¢?(E), respectively v € £*(V),
agrees with the F-action on e € E, respectively v € V. Each of these
spaces is naturally isomorphic to a product (¢*(F))" for the appropriate n.
Specifically, we have £2(E) = (£2(F))™ ® (as there are |X| = rk(F) orbits of
edges) and ¢*(V) = ¢*(F) (as there is a single orbit of vertices).

The usual simplicial boundary and co-boundary maps induce bounded
F-equivariant operators 9: ¢*(E) — ¢*(V)and §: €*(V) — (*(E) defined
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FIGURE 1. The local structure of the Cayley graph T when
% = {xh x2’ X3, x4}'

on the unit functions by:
de = 0,(e) — 0y(e),
v = Z e— Z e
ecdi(v) ecdy*(v)
The following lemma shows that these maps are adjoints.
Lemma 1.1. (Ja, ) = (a, ).
Proof. For unit functions e € ¢*(E) and v € £*(V) we see that:
1 ifd(e)=v
(De,v)y =4 —1 ifdy(e) =v ; = (e, 6v)
o otherwise
Since the spans of such functions are dense in the appropriate space, the
lemma holds. O
Definition 1.2. The reduced {>*—~homology groups of [ are:
#Ho(F) = ker § and %, (F) = ker 0.

The purpose of this note is to investigate these groups, specifically, we
will compute their von Neumann dimension (see Definition 3.2.2). The von
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Neumann dimension of the reduced £*~homology groups are called the
{*>—Betti numbers of [ (Definition 3.2.3). First we will show that #,(F) = o
(Theorem 2.1) and so the zeroth ¢>-Betti number of F is 0. More interest-
ingly, we will show that the first £>-Betti number of F is rk(F) — 1 (The-
orem 3.2.4), the so-called reduced rank. In fact, we will construct a (weak)

isomorphism (fz(ﬂf))rk([F)_1 — #,(F) (Theorem 3.6.3).

Remark 1.3. This fits into a larger framework of the reduced £?~homology
of a chain complex C, = {d,: C, — C,_,} of Hilbert-T-modules. (Here
I' is any discrete group.) In this more general setting the reduced {*—
homology groups are defined by:

This Hilbert space is naturally isomorphic to the I'-invariant Hilbert sub-
space of £?—harmonic chains:
#,(C.) =kerd, Nkerd, =kerA, C C,
where 6,: C, — Cp4, is the adjoint of d, and
Ap = O0ps16n + Op—10p: Cp = Cy

clos(im 9,4,)

is the combinatorial Laplacian. See [1, 4] for more details.

This set-up applies to discrete groups (in particular F) in the following
way. Suppose that I" acts on a contractible CW-complex X by freely per-
muting the cells of X, such that there are finitely many orbits of cells in
each dimension. (This is the situation we have for F and T.) Let C.(X) be
cellular chain complex of X with coefficients in C. One obtains a chain
complex of Hilbert-I'-modules by tensoring C.(X) with ¢*(T):

C(X: T) = () & CulX).
The reduced ¢*~homology groups of I' are defined as:
HA(D) = (€20 D).
The reader can verify that when I' = F, this reduces to the definition given
in Definition 1.2. Again, see [1, 4] for more details.

As T is one-dimensional, higher dimensional reduced £?~homology groups
for [ are trivial.

2. THE ZEROTH REDUCED HOMOLOGY GROUP OF [

We begin our investigation into the reduced {*~homology groups of F
by looking at dimension o.

Theorem 2.1. #,(F) = o.
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Proof. Fix f € £*(V) and suppose that 6 = o. Thenforallg € Fandx € X
we have (f, 0gex) = (6, gex) = 0. Thus we find

o = (B, dgex) = (B, gxvr) — (B, gv1) = PB(gxvy) — B(gvr).

Therefore f(gv1) = P(gxvy) for all g € F and x € L. Applying this to
gx ' € F, we see f(gx'vy) = P(gx~'xv1) = P(gvy) as well. As X is a
generating set we must have that f(v1) = f(gvy) for all g € F. Since there
is a single orbit of vertices, f(v) = oforallv € V as ) ¢y f(v)* < oo. Thus
B =o.

As ¢ is injective, #,(F) = ker § = o. O

The proof also shows that #,(I') = o for any infinite discrete group I' [1,

]. The key point is that o—co-cycles, i.e., functions in ker § € ¢*(T'), corre-

spond to constant functions and and the only constant square-summable
function on an infinite discrete group is the zero function.

3. THE FIRST REDUCED HOMOLOGY GROUP OF [F

We now turn our attention to the more interesting situation in dimen-
sion 1.

3.1. Examples of cycles in 7, (F). To begin, we present a few examples
of 1-cycles in £?(E), i.e., functions in ker 0 C (*(E).

Definition 3.1.1. Given two edges e, e’ € E, we define the edge distance,
denoted d(e, ¢’) as the number of edges in the edge path starting with e and
terminating with e’ minus one. If we consider T as a metric space where
each edge has length 1, this is the distance between the midpoints of the
edges.

Here is our first example of a 1—cycle.

Example 3.1.2. Fix two generators x,,x, € X and for simplicity denote
the edges ¢x, and ¢, by ¢, and ¢, respectively. For e € E we set |e| = d(e,, €).
Let W C F be the monoid generated by x; and x, and let W~ C [F be the
monoid generated by x[* and x . Let

S=W{x"e;,x, e, U{e;} Ux,W"{e,,e,} CE.

The function:
a(e) = {Z_M ifeeS

0 otherwise

is a 1—cycle.
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so that @ € €*(E). The equality between the first two sums is observed since
for i = 1,2, we have d(e,, x,9¢;) = |g| + 1 for g € W* and d(e,, gx;'¢;) =
|g| + 1 for g € W™ The equality between the final two sums is observed by
summing over the 2" elements g € W* with |g| = n.

Considering the function gvy € €*(V) we find:

(0a, gur) = (@, 6gur)
= > (@ gxex) - (. gx)
xeX
a(gxl_lgl) + a(gxz_lgz) - O{(ggl) - 0{(952).
There are three cases to treat.

If g ¢ x,W" UW~, then (da, gu1) = 0 as each term is o.
If g € W™, we have:

1 1
oa,guy) = —— + - —— =o.
0 g0 = o ¥ e o
Finally if g = x,h where h € W*, we have
Gargony = 1 L L

Slal-1 Llal Ll

Therefore, since the span of the functions gvy is dense in ¢*(V'), we have
that da = 0 and so « is indeed a 1-cycle. See Figure 2.

The next example constructs a family of 1-cycles that are important for
the calculation of the first £>~Betti number of [F.

Example 3.1.3. Fix a generator x; € X and for simplicity denote ¢, by

¢i. For an edge e € E, let |e|; = d(&,e). We set gi(e) = 1if e and ¢; are
coherently oriented and o;(e) = —1 otherwise. Let R = 2|X| — 1. The
function:
_ oi(e)
Ui(e) - R|e|i (3‘1'1)

is a 1—cycle. As before, we first verify that v; is in £*(E):

n

) 1 ad 2 R+1 1]
. = = + = + = = ’
[[vi]] Z R2lel; 1 2; R2n 1 R-1 R-1 [C] =1

ecE
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FIGURE 2. The 1-cycle o in Example 3.1.2. At each vertex,
the sum of the N and E directions (out-going) equals the
sum of the S and W directions (in-coming).

The equality between the second and third sum follows as for n > 1, there
are 2R" edges with |e|; = n. We will now show that dv; = o. Suppose
w € V and let e, be the terminal edge in the edge path starting with ¢;
and terminating at w. Enumerate the remaining edges adjacent to w by

e, ...eg where oi(ej) = —oi(e,) for j = 1,..., % and o;(ej) = oi(e,) for
j= %, ...,R. Notice that for j = 1,...,R, we have that |e;|; = |eo|; + 1.
Then we find:

R-1

B R
(v, w) = (v, dw) = Z(Ui,€j> - Z (v, )

Jj=o0 j=Re
2
B R
_ o(eo) + 2 —a(e,) _ Z o(e,) .
"~ Rlel  Zd Rleol+1 Rleol+1
i=1 :_ R+1

1=

2

As before, dv; = o0 and so v; is indeed a 1-cycle. See Figure 3.

Definition 3.1.4. The cycle v; € ¢*(E) in (3.1.1) is called the i—uniform
cycle. We also consider a scaled (not normalized!) version Y; = mvi =

%1,
[

3.2. von Neumann dimension. After these examples, we turn our at-
tention to computing the von Neumann dimension of #,(F), i.e., the first
{>-Betti number of F.

Before we define the von Neumann dimension, let us pause for a mo-
ment and consider how to compute the dimension of a subspace U C C"
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FIGURE 3. The 1-cycle v, in Example 3.1.3 when || = 2. At
each vertex, the sum of the N and E directions (out-going)
equals the sum of the S and W directions (in-coming).

without actually finding a basis for U. The tool we will use is orthogonal
projection onto U, denoted nryy: C" — C". There is a basis {b,, ..., b, } for
C" such that {b,, ..., by} is a basis for U (we just care about the existence of
such a basis, we do not need to find it). After applying the Gram—-Schmidt
process, we can assume that by, ..., b, are orthogonal to U. Using this
basis, the matrix representing orthogonal projection has block form:

I; o

0 o
where I; is the d X d identity matrix. Hence trace(sy) = d, the dimension
of U.

The same strategy to define the dimension for (closed) subspaces of
(€*(F))™ will fail since (¢*(F))" is infinite dimensional as a C-vector space.
However, if we make use of the action of F and restrict ourselves to F—
invariant closed subspaces U C (£*(F))", we get an interesting notion of
dimension by taking a certain type of trace of the orthogonal projection

operator. First we define the von Neumann algebra of [F, which is the nat-
ural setting for the trace function.

Definition 3.2.1. The von Neumann algebra of F, denoted N (F), is the
algebra of bounded (left) F-equivariant operators ¢*(F) — ¢*(F). The von
Neumann trace of an operator m € N (F) is defined as:

tracep(m) = (m(1), 1).

The choice of using the identity 1 € F may seem a bit arbitrary, but
the F-equivariance of m € N (F) shows that (m(g),g) = (m(1), 1) for any
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g € F. Indeed, either notice that (m(g),g) = (g - m(1),g- 1) = (m(1),1) as
elements g € [ act on ¢*([F) as unitary operators, or explicitly compute:

(m(g).9) = (m(9))(9) = (g- m(1))(9)
= (m(M)(g™"g) = (m(D)(1) = (m(1), 1).

An F-invariant bounded operator M: (¢*(F))" — (£*(F))" can be ex-
pressed as a matrix [m; ;] of operators m; ; € N(F) where:

M(fr -5 f) = (Zn: myi(fi), .- - Zn: mn,i(ﬁ)) :

We extend the von Neumann trace to such operators in the usual way by
considering the diagonal elements:

n
tracep(M) = Z tracep(m;;).

i=1

With this motivation and set-up, we can now define the von Neumann
dimension.

Definition 3.2.2. Let iy : (€*(F))" — (£*(F))" denote the orthogonal pro-
jection onto a F-invariant Hilbert subspace U C (£*(F))" and express

ny = [m;,;] as a matrix of operators m; ; € N(F). The von Neumann di-
mension of U is defined as:

dimp(U) = tracep(my) = i(m,-,i(ﬂ), 1). (3.2.1)

The von Neumann dimension satisfies several properties akin to the
usual dimension:

(1) dimp(M) > o and dimg(M) =0 < M = o,
(2) if M = N, then dimp(M) = dimg(N) and
(3) dimp(M @ N) = dimp(M) + dimg(N).

See [4] for details. We remark that the von Neumann dimension is not
necessarily an integer but that clearly, dimg((¢*(F))") = n. Indeed, this
follows as the von Neumann trace of the identity operator I: ¢*(F) —
¢*(F) is (I(1), 1) = (1, 1) = 1 and hence the the von Neumann trace of the
identity operator I,,: (€*(F))" — (£*(F))" is n.

Using the isomorphism between (¢*(F))™*®) and ¢*(E), if ny: €*(E) —
¢*(E) is projection onto an F-invariant Hilbert subspace U C ¢*(E) then:

dime(U) = tracer(my) = ) (ru(ex). &) (3.2.2)
xeX
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Of course, this discussion applies to any discrete group I' and so N (I'),
tracer and dimr are all well-defined. We can now formally define £*>-Betti
numbers.

Definition 3.2.3. Let I be a discrete group. The ith £?—Betti number of T
is dimp(#;(T)).

Phrased in this language, Theorem 2.1 states that the zeroth £*>-Betti
number of F (or any infinite discrete group) is o. We now arrive at what
can be thought of as the main result in this note.

Theorem 3.2.4. The first > —Betti number of F is rk(F) — 1, in other words,
dimp(#,(F)) = rk(F) — 1.

We will provide two proofs of this theorem in Section 3.5. The first proof
is the most direct and often used. It uses the additivity property of von
Neumann dimension and the calculation of #,(F). The second proof uses
the definition of von Neumann dimension in Definition 3.2.2. Specifically,
we will give a formula for orthogonal projection onto #,(F) € ¢*(E) from
which we can compute its trace.

We briefly describe this formula for the orthogonal projection now. For
simplicity, in the remainder of this note, we denote 7, ) by 7 and ¢, by
¢i. The orthogonal projection 7: £*(E) — ¢*(E) is defined via a type of
convolution with the component functions of the scaled i—uniform cycles
Y; of Definition 3.1.4. We therefore need a sufficient condition for when
convolving with a fixed element of £*(F) defines an element of the von
Neumann algebra N (F). This is in the content of the next Section 3.3.

Following this, we will show in Section 3.4 that z: ¢*(E) — ¢*(E) satis-
fies

(mei, ge) = Yi(g™ ).
where Y; is the scaled i—uniform cycle from Definition 3.1.4. As Yj(¢;) =

rlﬁ{fgl, this will show in Section 3.5 that dimg(%, (F)) = rk(F) — 1.

3.3. Convolution in £*(F). In this section we give a sufficient condition
for the convolution of two square-summable functions to be square-summable.
A similar condition was proved by Haagerup [2] and would suffice for our
purposes. For completeness, we provide a proof.

Definition 3.3.1. A function r: F — C is exponentially decaying if there
i ¢
exists a constant C such that |7(g)| < G forallg € F.
Notice that a exponentially decreasing function is square-summable, but
not necessarily summable.
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Proposition 3.3.2. Let 7: F — C be an exponentially decaying function.
Then for any f € £*(F) the convolution f * 7: F — C defined by:

(f x7)9) = ) flgh™)e(h) (33.1)

helF

is a square-summable function, i.e., f = t € £*(F). Moreover, there is a con-
stant B = B(C, rk([F)) such that ||f = || < B||f]l.

Proof. Let R = 2rk(F) — 1 and let C be the constant such that |7(g)| < ﬁ

for all g € F. We will first produce a constant C, such that |(f * 7)(g)| <
% forallg € F.

Given two words g, h € F we denote the common prefix by g A h. For
g € Fweset P = {h € F||gAh| = n} These sets form a partition:

F = UngloPg. Therefore we can write:

(f <)@l < D Ifgh™ el = Y |f(hyr(h™'g)|

helF helF
)
= |f(Wz(h"g)]
=y (3.3:2)
) %C S bl _ % C 5 1rh)
= -n hl-n"*
= e RIA+gl £ Rldl i RIAl
For each n € {o,...,|g|} we let ¢,: F — {o, 1} be the characteristic func-

tion of the set P;. Define f,(h) = cn(h)f(h) and r,(h) =
L]l < NIfIl. As for r, we find:

1 > 1 > 1 R
Il = > T = > = < ZR"Rzk - =
hePg k=0 Hg:;ik k=0
9

}g ‘"h(tzl . Clearly

Therefore, by the Cauchy—-Schwartz inequality we have:

|f(h)| R \'/?
— = ) e < Ifall - llrall < 1| 5—
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Combining this with the the inequality in (3.3.2) we have:

l9] L
(REOEDWDY A

|h|-n
hP”R

< WDy ()"

SQM+0
Rl

as sought where C, = C||f||( )1/2 We then find:

S <c Y e

geF gelF R2|g|
(gl + 1)
2
D) TR

=0 Jgl=n

(n+1)

<@Zm+m“

(R + 1) Z (n+ 1)2 (R;— 1) 4R(2R—_3112):- 1

as desired. The existence of a constant B = B(C, rk(F)) such that ||f = || <
B||f]| is now clear as C, is a constant times || f]|. O

We record the following immediate properties of convolution.

Proposition 3.3.3. Let 7: F — C be an exponentially decaying function.
Then:

() VL, LelCE):(fi+t fL)xt=fisxt+ f,*71,

(@ Vfelt:(F), AeC:(Af) =t =Af *1) = f = (A1),
(3) Vfelt?(F),geF:g-(f*x1)=(g-f) =7, and
(4) Vg, h € F: (h=1)(g9) = t(h™"g).

3.4. The projection operator 7y, (r). As stated in Section 3.2, we denote
the orthogonal projection 7y, (r): ¢*(E) — €*(E) by 7 and the edges ¢, €
Eq by ¢;. Further, for the remainder, set R = 2 rk(F) — 1.

The main result of this section is an explicit description of #. This is
the key ingredient of the second proof of Theorem 3.2.4 presented in Sec-
tion 3.5.

Theorem 3.4.1. If @ € ¢*(E), then wa(ge;) = (g~ - , ;).
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We first show that the formula in Theorem 3.4.1 defines an F-equivariant
bounded operator on ¢*(E). Verifying that the formula does indeed de-
scribe orthogonal projection occurs in a series of lemmas following the
proposition.

Proposition 3.4.2. Suppose a € (*(E) andi = 1,...,rk(F).
(1) The function f: F — C defined by f(g9) = (97" - a, ;) is in £*(F).
(2) The functionYa: E — C defined by Ya(ge;) = (g9~ '-a, Y;) isin £*(E).
(3) The assignment a — Ya defines a bounded F—equivariant operator
on {*(E).
Proof. For j = 1,...,rk(F), define component functions ;, Y j: F — Cby
aj(g9) = a(gej) and Y; j(g) = Yi(gej). Then a;,Y; ; € €(F) and |Y; j(g)| <
and hence is exponentially decreasing. Then:

F@ =g aXi) = ) alge)ie)

1
Rl9l

ecE
rk(F) rk(F)
= > D alghe)ithey) = > > aj(gh)Y; j(h)
j=1 heF j=1 heF

rk(F)

= Z (o * Xi.;)(9)-
j=1

By Proposition 3.3.2, we have that each function «; *TJ is square-summable,
hence so is f. This proves (1). Since we can view Y« as a tuple of functions
as in (1), this proves (2) as well.

That Y defines a bounded operator follows from Proportions 3.3.2 and
3.3.3 and the above description. Equivariance follows from the observa-
tion:

Y(h-a)ge) =(g9 "h-a,Yi) = Ya(h™g&) = h- (Ya)(ge:)-
This proves (3). O

The next three lemmas will show that Y = 7, where 7: €*(E) — (*(E)
is orthogonal projection onto #,(F).

Lemma 3.4.3. If f € £>(V) then Y(6) = o.
Proof. Y(6p)(ge:) = (g - 6p,Y;) =(6(g™" - p).Yi) =(g" - B.dL;) =0. DO

Hence imé C ker Y. The following averaging estimation is the key in-
gredient for showing that Y is the identity on cycles.
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Lemma 3.4.4. Ifa € (*(E) and da = o, then forallg € F, i = 1,...,rk(F)
and N > o:

N
Z Z a(ge)vi(e) = a(ge;) (1 +2 Z Ri) (3.4.1)

n=o |le|;=n

Proof. To begin we claim that for n > 2:

HZ alge)ui(e) = %IIZ a(ge)ui(e) (342)
To see this, fix an edge e with |e|; = n — 1 and enumerate the R edges
e, ...,eg adjacent to e with |ej|; = nfor j = 1,...,R where o(e;) = —o(e)
forj = 1,...,1% and o(ej) = o(e) for j = R;”,...,R. Since da = o we
have:
R e R
alge)= > alge) - > alge) = > olealge)).
j=% j=1 j=1

Multiplying this equation by Ri(\fil = zvi(e) = #ej)vi(ej) we get:

R

~a(geu(e) = ) algeuie) (3.4:3)

j=1

Equation (3.4.2) follows from (3.4.3) by summing over all edges with |e|; =
n-1i.
Then using induction on (3.4.2) we find:

D algeile) = s D algeui(e).

lel;=n lel;=1

The above argument for (3.4.2) also shows that the summation on the right
is exactly za(ge)vi(e)) = %a(gei), the difference being that there are 2R
edges adjacent to ¢; whose edge distance to ¢; is 1 and that (3.4.3) holds for
each of the two subsets of size R. Hence for n > 1 we have:

> algeuile) = —alge)

lel;=n
and so (3.4.1) holds. O

Lemma 3.4.5. If ¢ € ¢*(E) and 0 = o, then Ya = a.
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Proof. Using Lemma 3.4.4 we find for any g € Fand i = 1, ..., rk(F):
Ta(ge) = (g™ - & X;) = ) a(ge)i(e)

ecE

- (B30 3 atgenne)

n=o |le|;=n

= a(ge;) (%) (1 + ZZ.:: ]%)
2

(I ()

From these lemmas, it follows that Y is orthogonal projection onto ker d.

Proof of Theorem 3.4.1. Lemma 3.4.3 shows thatim § C ker Y and Lemma3.4.5
shows that Y is the identity on ker 0. As ¢*(E) = ker d L im § we have that
Y is orthogonal projection onto ker d = %, ([F). O

3.5. Two proofs of Theorem 3.2.4. We now give two calculations show-
ing that the first £>~Betti number of F is rk(F) — 1; this is the content of
Theorem 3.2.4.

First proof of Theorem 3.2.4. The adjoint relation between 0 and J gives a
orthogonal direct sum decomposition:

¢*(E) = ker & L im 6.

By Theorem 2.1 we have that § is injective and so dimg(im §) = dimg(£*(F)) =
1. Thus:

dimp(%,(F)) = dimg(ker ) = dimp(£*(E)) — dimp(im §) = rk(F) — 1. O

Second proof of Theorem 3.2.4. We have nej(ge;) = (g '¢j, 1i) = Yi(g '¢j) by
Theorem 3.4.1. Using (3.2.2) we have:

rk([F) rk(F)

dimg(%,(F)) = tracep(r) = Z(Mi, &) = Z Yi(e:)
tk(®) rk(F) — 1
:ZW:rk(ﬂ:)—l. O

i=1

3.6. Weak isomorphisms between (£*(F))™™~* and %,(F). We have
now seen that dimg(%,(F)) = rk(F) — 1. We conclude our analysis of #,(F)
by explicitly describing a weak isomorphism (£(F))*®)~1 — %, (F). Re-
call, a bounded F-equivariant operator U — V of Hilbert-F-modules is a
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position, it can be shown that two weakly isomorphic Hilbert-F-modules
are isometrically isomorphic [1, Lemma 2.5.3].

The weak isomorphism we are interested in is the adjoint of the projec-
tion onto the first rk(F) — 1 component functions in (£2(F))™*®.

Theorem 3.6.1. The operator P: (¢*(F))*® — (£2(F)y*®1 defined by:
P(fi,- -5 fi@®) = (fir - - -5 frk@®-1) (3.6.1)

restricts to a weak isomorphism P: #,(F) — (£2(F))&E)-1,

Proof. As dimg(%,(F)) = rk(F) — 1 = dimg((£2(F))™*®1), it suffices to
show that P is injective on %, (F) [4, Lemma 1.13].
To this end, we suppose a = (o, ...,o0, f) € #,(F), in other words, a €
ker P N ker 0. Then for each g € F we have
0 = (da, gvr) = (@, bgv1) = f(9x,) — f(9)-

From this it follows that f(g) = f (gxr”k([F)) for all n € Z. Since
> flgxtie)? < IIfIF < oo,

neZ

we must have f(g) = o. As g € F was arbitrary, we have f = o and so
a = o. Thus ker P N ker d = {o} and so P is injective on %, (F). O

Remark 3.6.2. The operator P: %,(F) — (£*(F))™ " is not surjective.
For instance (1,0, ...,0) ¢ imP. Indeed, if (1,0, ...,0, f) € #,(F) = kerd
then arguing as in the proof of Theorem 3.6.1 we see that for all n > o that

f(xr_kré[F)) = f(xr_kl([p)) =f(1)+1= f(x:k(u:)) + 1.
Such a function could not be square-summable.

We now seek to describe the adjoint P*: (£*(F))™*®~1 — %,(F). As in
the proof of Proposition 3.4.2, for i,j = 1,...,rk(F) we define Y; ; € £*(F)
by Y; j(9) = Yi(gej) where Y; € €*(E) is the scaled i—uniform cycle from
Definition 3.1.4. Then for = (B, ..., fk@)-1) € (£*(F))™ M1 we define

rk(F)—1
Qf= > BixTi;
We recall for convenience in the proof of Theorem 3.6.3 that
PixXij(h) = ) Bilhg)ij(g™) = ) Bilhg) i j(9) = (h™* - i Xoj).
geF gelF

Then as in Proposition 3.4.2, Q;: (€*(F)y*®~1 - ¢2(F) is a bounded F-
equivariant operator.
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Theorem 3.6.3. The adjoint P*: (¢*(F))*®)~1 — %,(F) is given by:
P*f=(Q:p, ..., 0wmp) (3.6.2)

and is a weak isomorphism.

Proof. The adjoint of a weak isomorphism is always weak isomorphism, so
the content of the theorem is that the formula in (3.6.2) defines P*. Thisis a
direct calculation essentially reproducing the fact the adjoint of convolving

against a function f is convolving against the conjugate f.

Fixa = (0(1, Ceey Ofrk([p)) S %1([F) and,B = (ﬁl, ce ’ﬁrk([F)—1) € (fz([l:))rk(ﬂ:)_l.
By Theorem 3.4.1 we have that 7@ = « and so:

tk(F)
a(g) = alge) = ma(ge) = (g™ - & Xy) = > (a9 i j).
j=1
Using this we compute:
rk(F)-1 rk(F)-1
P, py="> (afpy= ). > alg)p(9)
i=1 i=1 gEU:

rk(F)—1 (rk( F)

ZZZW%W@

i=1 geF \ j=1
rk(F)—1 rk(F) (

Z Z Z Z“j(h)Yi,j(g‘lh)) Bi(9)

i=1  j=1 geF \heF
rk(F) rk(F)—1 (

>3 S

j=1 i=1 heF

Xk 9)Big)
geF
rk(F) rk(F)—1

=D, 2. 2 kT

Jj=1 i=1 helF

rk(F) rk(F)—1 rk(F)
=0 D e BNy = D (e Q) = (@, P'B).
j=1 i=1 Jj=1
This proves the theorem. m|
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