
`2–HOMOLOGY OF THE FREE GROUP

MATT CLAY

Abstract. We analyze the reduced `2–homology groups of a �nitely

generated nonabelian free group, F . Speci�cally, the projection map

onto the space of harmonic `2–1–chains is explicitly described and a

weak isomorphism from (`2(F))rk(F)−1 to the space of harmonic `2–1–

chains is given.

In these notes we collect several calculations regarding the `2–homology

of a �nitely generated nonabelian free group. In some places more details

regarding standard arguments are provided but no originality is claimed

for any of the following material, except for errors.

I became interested in `2–homology through Mineyev’s proof of the

Hanna Neumann conjecture [6]; see also [5] for a proof avoiding `2–homology.

In an attempt to understand the tools and techniques of the `2–theory ap-

plied to discrete groups I wanted to see a calculation of the `2–Betti num-

bers for a free group using the de�nition of the von Neumann dimension

(this de�nition appears in Section 3.2). The most direct calculation uses

additivity properties of the von Neumann dimension and the Euler char-

acteristic of the free group (this argument appears in Section 3.5). As I

was unable to �nd a calculation using the de�nition of the von Neumann

dimension, I decided to write these notes.

There are excellent surveys of `2–homology of discrete groups by Eck-

mann [1] and Lück [3]. Additionally, Lück’s book [4] is a very thorough

reference on the subject.

I would like to thank Andy Raich for discussions that inspired me to

write these notes and to the anonymous referee whose suggestions im-

prove the exposition.

1. Preliminaries

Let F be a free group with �nite rank at least two, denoted rk(F). We de-

note the identity element of F by 1. The Hilbert space of square-summable

functions f : F → C is denoted `2(F). The inner product on `2(F) is given

The author is partially supported by the Simons Foundation.
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by:

〈f1, f2〉 =
∑
д∈F

f1(д)f2(д)

The dense subset of �nitely supported functions is isomorphic (as a vector

space) to the group algebra C[F]. As such, we consider an element д ∈ F

as the element of C[F] ⊂ `2(F) that is the unit function that takes value 1

on д and 0 elsewhere. The group F acts on both the left and on the right

of `2(F) by:

(д · f )(h) = f (д−1h) and (f · д)(h) = f (hд−1)
These extend to left and right actions of C[F] by bounded operators. The

adjoint of the operator associated to a ∈ C[F] is the corresponding action

by the conjugate a ∈ C[F], where for f ∈ `2(F) we de�ne f (д) = f (д−1).
We �x a basis X ⊂ F that we will use for the remainder. We denote

the Cayley graph of F with respect to X by T = TX and we denote the

word length of д ∈ F with respect to X by
��д�� = ��д��X. The set of edges in

T is denoted by E = E(T ) and the set of vertices by V = V (T ). We recall

the construction of the Cayley graph for the convenience of the reader.

Vertices of T correspond to group elements in F ; the vertex of T corre-

sponding to д ∈ F is denoted by vд. There in an edge e ∈ E with initial

vertex ∂0(e) = vд and terminal vertex ∂1(e) = vh if h−1д ∈ X, i.e., д = hx
for some x ∈ X. The group F acts on the left by дvh = vдh . For x ∈ X, we

let εx be the edge with endpoints ∂0(εx ) = v1 and ∂1(εx ) = vx and we set

EX = {εx ∈ E | x ∈ X}. Since X is a basis, the Cayley graph T is a tree.

The local structure of T is shown in Figure 1.

The Hilbert space of square-summable functions α : E → C is denoted

by `2(E). As for `2(F), we will consider an edge e ∈ E as the unit func-

tion in `2(E) that takes value 1 on e and 0 elsewhere. The span of these

functions is dense in `2(E) and denoted C[E]. Similarly, the Hilbert space

of square-summable functions β : V → C is denoted by `2(V ). Again,

we will consider vertices as unit functions in `2(V ) and denote the span of

these functions by C[V ]. There is a left action by F on both `2(E) and `2(V )
de�ned analogously to the action on `2(F): act on the input by the inverse.

We remark that the left F–action on e ∈ `2(E), respectively v ∈ `2(V ),
agrees with the F–action on e ∈ E, respectively v ∈ V . Each of these

spaces is naturally isomorphic to a product (`2(F))n for the appropriate n.

Speci�cally, we have `2(E) � (`2(F))rk(F) (as there are |X| = rk(F) orbits of

edges) and `2(V ) � `2(F) (as there is a single orbit of vertices).

The usual simplicial boundary and co-boundary maps induce bounded

F–equivariant operators ∂ : `2(E) → `2(V ) and δ : `2(V ) → `2(E) de�ned
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Figure 1. The local structure of the Cayley graph T when

X= {x1,x2,x3,x4}.

on the unit functions by:

∂e = ∂1(e) − ∂0(e),
δv =

∑
e∈∂−1

1
(v)

e −
∑

e∈∂−1
0
(v)

e

The following lemma shows that these maps are adjoints.

Lemma 1.1. 〈∂α , β〉 = 〈α ,δβ〉.
Proof. For unit functions e ∈ `2(E) and v ∈ `2(V ) we see that:

〈∂e,v〉 =



1 if ∂1(e) = v
−1 if ∂0(e) = v
0 otherwise



= 〈e,δv〉

Since the spans of such functions are dense in the appropriate space, the

lemma holds. �

De�nition 1.2. The reduced `2–homology groups of F are:

H0(F) = kerδ and H1(F) = ker ∂.

The purpose of this note is to investigate these groups, speci�cally, we

will compute their von Neumann dimension (see De�nition 3.2.2). The von
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Neumann dimension of the reduced `2–homology groups are called the

`2–Betti numbers of F (De�nition 3.2.3). First we will show that H0(F) = 0

(Theorem 2.1) and so the zeroth `2–Betti number of F is 0. More interest-

ingly, we will show that the �rst `2–Betti number of F is rk(F) − 1 (The-

orem 3.2.4), the so-called reduced rank. In fact, we will construct a (weak)

isomorphism

�
`2(F)�rk(F)−1 → H1(F) (Theorem 3.6.3).

Remark 1.3. This �ts into a larger framework of the reduced `2–homology

of a chain complex C∗ = {∂n : Cn → Cn−1} of Hilbert–Γ–modules. (Here

Γ is any discrete group.) In this more general setting the reduced `2–
homology groups are de�ned by:

H (2)
n (C∗) = ker ∂n

/
clos(im ∂n+1).

This Hilbert space is naturally isomorphic to the Γ–invariant Hilbert sub-

space of `2–harmonic chains:

Hn(C∗) = ker ∂n ∩ kerδn = ker∆n ⊆ Cn

where δn : Cn → Cn+1 is the adjoint of ∂n and

∆n = ∂n+1δn + δn−1∂n : Cn → Cn

is the combinatorial Laplacian. See [1, 4] for more details.

This set-up applies to discrete groups (in particular F ) in the following

way. Suppose that Γ acts on a contractible CW–complex X by freely per-

muting the cells of X , such that there are �nitely many orbits of cells in

each dimension. (This is the situation we have for F and T .) Let C∗(X ) be

cellular chain complex of X with coe�cients in C. One obtains a chain

complex of Hilbert–Γ–modules by tensoring C∗(X ) with `2(Γ):
C(2)
n (X ; Γ) = `2(Γ) ⊗Γ Cn(X ).

The reduced `2–homology groups of Γ are de�ned as:

H (2)
n (Γ) = H (2)

n (C(2)
∗ (X ; Γ)).

The reader can verify that when Γ = F , this reduces to the de�nition given

in De�nition 1.2. Again, see [1, 4] for more details.

AsT is one-dimensional, higher dimensional reduced `2–homology groups

for F are trivial.

2. The zeroth reduced homology group of F

We begin our investigation into the reduced `2–homology groups of F

by looking at dimension 0.

Theorem 2.1. H0(F) = 0.
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Proof. Fix β ∈ `2(V ) and suppose that δβ = 0. Then for all д ∈ F and x ∈ X
we have 〈β, ∂дεx〉 = 〈δβ,дεx〉 = 0. Thus we �nd

0 = 〈β , ∂дεx〉 = 〈β ,дxv1〉 − 〈β ,дv1〉 = β(дxv1) − β(дv1).
Therefore β(дv1) = β(дxv1) for all д ∈ F and x ∈ X. Applying this to

дx−1 ∈ F , we see β(дx−1v1) = β(дx−1xv1) = β(дv1) as well. As X is a

generating set we must have that β(v1) = β(дv1) for all д ∈ F . Since there

is a single orbit of vertices, β(v) = 0 for allv ∈ V as

∑
v∈V β(v)2 < ∞. Thus

β = 0.

As δ is injective, H0(F) = kerδ = 0. �

The proof also shows that H0(Γ) = 0 for any in�nite discrete group Γ [1,

4]. The key point is that 0–co-cycles, i.e., functions in kerδ ⊆ `2(Γ), corre-

spond to constant functions and and the only constant square-summable

function on an in�nite discrete group is the zero function.

3. The first reduced homology group of F

We now turn our attention to the more interesting situation in dimen-

sion 1.

3.1. Examples of cycles in H1(F). To begin, we present a few examples

of 1–cycles in `2(E), i.e., functions in ker ∂ ⊆ `2(E).
De�nition 3.1.1. Given two edges e, e′ ∈ E, we de�ne the edge distance,
denotedd(e, e′) as the number of edges in the edge path starting with e and

terminating with e′ minus one. If we consider T as a metric space where

each edge has length 1, this is the distance between the midpoints of the

edges.

Here is our �rst example of a 1–cycle.

Example 3.1.2. Fix two generators x1,x2 ∈ X and for simplicity denote

the edges εx1 and εx2 by ε1 and ε2 respectively. For e ∈ E we set |e | = d(ε1, e).
LetW + ⊂ F be the monoid generated by x1 and x2 and letW − ⊂ F be the

monoid generated by x−1
1

and x−1
2

. Let

S =W −{x−1
1
ε1,x

−1
2
ε2} ∪ {ε1} ∪ x1W +{ε1, ε2} ⊂ E.

The function:

α(e) =



2
−|e |

if e ∈ S

0 otherwise

is a 1–cycle.
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Indeed, �rst notice that:

‖α‖2 =
∑
e∈S

1

4
|e |
= 1 + 2

∑
д∈W +

1

4
|д|+1

+ 2
∑
д∈W −

1

4
|д|+1

= 1 +
∑
д∈W +

1

4
|д|
= 1 +

∞∑
n=0

2
n 1

4
n
= 3

so thatα ∈ `2(E). The equality between the �rst two sums is observed since

for i = 1, 2, we have d(ε1,x1дεi) = ��д�� + 1 for д ∈ W + and d(ε1,дx−1i εi) =
��д��+ 1 for д ∈W −

. The equality between the �nal two sums is observed by

summing over the 2
n

elements д ∈W + with
��д�� = n.

Considering the function дv1 ∈ `
2(V ) we �nd:

〈∂α ,дv1〉 = 〈α ,δдv1〉
=

∑
x∈X

〈α ,дx−1εx〉 − 〈α ,дεx〉

= α(дx−1
1
ε1) + α(дx−12 ε2) − α(дε1) − α(дε2).

There are three cases to treat.

If д < x1W
+ ∪W −

, then 〈∂α ,дv1〉 = 0 as each term is 0.

If д ∈W −
, we have:

〈∂α ,дv1〉 = 1

2
|д|+1

+
1

2
|д|+1

−
1

2
|д|
= 0.

Finally if д = x1h where h ∈W +, we have

〈∂α ,дv1〉 = 1

2
|д|−1

−
1

2
|д|
−

1

2
|д|
= 0.

Therefore, since the span of the functions дv1 is dense in `2(V ), we have

that ∂α = 0 and so α is indeed a 1–cycle. See Figure 2.

The next example constructs a family of 1–cycles that are important for

the calculation of the �rst `2–Betti number of F .

Example 3.1.3. Fix a generator xi ∈ X and for simplicity denote εxi by

εi . For an edge e ∈ E, let |e |i = d(εi , e). We set σi(e) = 1 if e and εi are

coherently oriented and σi(e) = −1 otherwise. Let R = 2 |X| − 1. The

function:

υi(e) = σi(e)
R |e |i

(3.1.1)

is a 1–cycle. As before, we �rst verify that υi is in `2(E):

‖υi‖2 =
∑
e∈E

1

R2|e |i
= 1 + 2

∞∑
n=1

Rn

R2n
= 1 +

2

R − 1
=
R + 1

R − 1
=
|X|

|X| − 1
.
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v1 1

1/2

1/2

1/2

1/2

1/4

1/4

1/4

1/4

1/4

1/4

1/4

1/4

Figure 2. The 1–cycle α in Example 3.1.2. At each vertex,

the sum of the N and E directions (out-going) equals the

sum of the S and W directions (in-coming).

The equality between the second and third sum follows as for n ≥ 1, there

are 2Rn edges with |e |i = n. We will now show that ∂υi = 0. Suppose

w ∈ V and let e0 be the terminal edge in the edge path starting with εi
and terminating at w . Enumerate the remaining edges adjacent to w by

e1, . . . eR where σi(ej) = −σi(e0) for j = 1, . . . , R−1
2

and σi(ej) = σi(e0) for

j = R+1
2
, . . . ,R. Notice that for j = 1, . . . ,R, we have that |ej |i = |e0|i + 1.

Then we �nd:

〈∂υi ,w〉 = 〈υi ,δw〉 =
R−1
2∑

j=0

〈υi , ej〉 −
R∑

j= R+1
2

〈υi , ej〉

=
σ (e0)
R |e0 |

+

R−1
2∑

i=1

−σ (e0)
R |e0 |+1

−

R∑
i= R+1

2

σ (e0)
R |e0 |+1

= 0.

As before, ∂υi = 0 and so υi is indeed a 1–cycle. See Figure 3.

De�nition 3.1.4. The cycle υi ∈ `
2(E) in (3.1.1) is called the i–uniform

cycle. We also consider a scaled (not normalized!) version ϒi =
1

‖υi ‖2υi =
|X|−1
|X|

υi .

3.2. von Neumann dimension. After these examples, we turn our at-

tention to computing the von Neumann dimension of H1(F), i.e., the �rst

`2–Betti number of F .

Before we de�ne the von Neumann dimension, let us pause for a mo-

ment and consider how to compute the dimension of a subspace U ⊆ Cn
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Figure 3. The 1–cycleυ1 in Example 3.1.3 when |X| = 2. At

each vertex, the sum of the N and E directions (out-going)

equals the sum of the S and W directions (in-coming).

without actually �nding a basis for U . The tool we will use is orthogonal

projection ontoU , denoted πU : Cn → Cn
. There is a basis {b1, . . . ,bn} for

Cn
such that {b1, . . . ,bd} is a basis forU (we just care about the existence of

such a basis, we do not need to �nd it). After applying the Gram–Schmidt

process, we can assume that bd+1, . . . ,bn are orthogonal to U . Using this

basis, the matrix representing orthogonal projection has block form:

[
Id 0

0 0

]

where Id is the d × d identity matrix. Hence trace(πU ) = d , the dimension

of U .

The same strategy to de�ne the dimension for (closed) subspaces of

(`2(F))n will fail since (`2(F))n is in�nite dimensional as a C–vector space.

However, if we make use of the action of F and restrict ourselves to F–

invariant closed subspaces U ⊆ (`2(F))n, we get an interesting notion of

dimension by taking a certain type of trace of the orthogonal projection

operator. First we de�ne the von Neumann algebra of F , which is the nat-

ural setting for the trace function.

De�nition 3.2.1. The von Neumann algebra of F , denoted N(F), is the

algebra of bounded (left) F–equivariant operators `2(F) → `2(F). The von
Neumann trace of an operatorm ∈ N(F) is de�ned as:

traceF (m) = 〈m(1), 1〉.
The choice of using the identity 1 ∈ F may seem a bit arbitrary, but

the F–equivariance of m ∈ N(F) shows that 〈m(д),д〉 = 〈m(1), 1〉 for any
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д ∈ F . Indeed, either notice that 〈m(д),д〉 = 〈д ·m(1),д · 1〉 = 〈m(1), 1〉 as

elements д ∈ F act on `2(F) as unitary operators, or explicitly compute:

〈m(д),д〉 = �
m(д)�(д) = �

д ·m(1)�(д)
=

�
m(1)�(д−1д) = �

m(1)�(1) = 〈m(1), 1〉.
An F–invariant bounded operator M : (`2(F))n → (`2(F))n can be ex-

pressed as a matrix [mi,j] of operatorsmi, j ∈ N(F) where:

M(f1, . . . , fn) = *
,

n∑
i=1

m1,i(fi), . . . ,
n∑
i=1

mn,i(fi)+
-
.

We extend the von Neumann trace to such operators in the usual way by

considering the diagonal elements:

traceF (M) =
n∑
i=1

traceF (mi,i).

With this motivation and set-up, we can now de�ne the von Neumann

dimension.

De�nition 3.2.2. Let πU : (`2(F))n → (`2(F))n denote the orthogonal pro-

jection onto a F–invariant Hilbert subspace U ⊆ (`2(F))n and express

πU = [mi, j] as a matrix of operators mi, j ∈ N(F). The von Neumann di-
mension of U is de�ned as:

dimF (U ) = traceF (πU ) =
n∑
i=1

〈mi, i(1), 1〉. (3.2.1)

The von Neumann dimension satis�es several properties akin to the

usual dimension:

(1) dimF (M) ≥ 0 and dimF (M) = 0 ⇐⇒ M = 0,

(2) if M � N , then dimF (M) = dimF (N ) and

(3) dimF (M ⊕ N ) = dimF (M) + dimF (N ).
See [4] for details. We remark that the von Neumann dimension is not

necessarily an integer but that clearly, dimF

�(`2(F))n�
= n. Indeed, this

follows as the von Neumann trace of the identity operator I : `2(F) →
`2(F) is 〈I (1), 1〉 = 〈1, 1〉 = 1 and hence the the von Neumann trace of the

identity operator In : (`2(F))n → (`2(F))n is n.

Using the isomorphism between (`2(F))rk(F) and `2(E), if πU : `2(E) →
`2(E) is projection onto an F–invariant Hilbert subspace U ⊆ `2(E) then:

dimF (U ) = traceF (πU ) =
∑
x∈X

〈πU (εx ), εx〉 (3.2.2)
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Of course, this discussion applies to any discrete group Γ and so N(Γ),
traceΓ and dimΓ are all well-de�ned. We can now formally de�ne `2–Betti

numbers.

De�nition 3.2.3. Let Γ be a discrete group. The ith `2–Betti number of Γ
is dimΓ(Hi(Γ)).

Phrased in this language, Theorem 2.1 states that the zeroth `2–Betti

number of F (or any in�nite discrete group) is 0. We now arrive at what

can be thought of as the main result in this note.

Theorem 3.2.4. The �rst `2–Betti number of F is rk(F) − 1, in other words,
dimF (H1(F)) = rk(F) − 1.

We will provide two proofs of this theorem in Section 3.5. The �rst proof

is the most direct and often used. It uses the additivity property of von

Neumann dimension and the calculation of H0(F). The second proof uses

the de�nition of von Neumann dimension in De�nition 3.2.2. Speci�cally,

we will give a formula for orthogonal projection onto H1(F) ⊆ `2(E) from

which we can compute its trace.

We brie�y describe this formula for the orthogonal projection now. For

simplicity, in the remainder of this note, we denote πH1(F) by π and εxi by

εi . The orthogonal projection π : `2(E) → `2(E) is de�ned via a type of

convolution with the component functions of the scaled i–uniform cycles

ϒi of De�nition 3.1.4. We therefore need a su�cient condition for when

convolving with a �xed element of `2(F) de�nes an element of the von

Neumann algebra N(F). This is in the content of the next Section 3.3.

Following this, we will show in Section 3.4 that π : `2(E)→ `2(E) satis-

�es

〈πεi ,дεj〉 = ϒi(д−1εi).
where ϒi is the scaled i–uniform cycle from De�nition 3.1.4. As ϒi(εi) =
rk(F)−1
rk(F) , this will show in Section 3.5 that dimF (H1(F)) = rk(F) − 1.

3.3. Convolution in `2(F). In this section we give a su�cient condition

for the convolution of two square-summable functions to be square-summable.

A similar condition was proved by Haagerup [2] and would su�ce for our

purposes. For completeness, we provide a proof.

De�nition 3.3.1. A function τ : F → C is exponentially decaying if there

exists a constant C such that
��τ (д)�� ≤ C

(2 rk(F)−1)|д | for all д ∈ F .

Notice that a exponentially decreasing function is square-summable, but

not necessarily summable.
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Proposition 3.3.2. Let τ : F → C be an exponentially decaying function.
Then for any f ∈ `2(F) the convolution f ∗ τ : F → C de�ned by:

(f ∗ τ )(д) =
∑
h∈F

f (дh−1)τ (h) (3.3.1)

is a square-summable function, i.e., f ∗ τ ∈ `2(F). Moreover, there is a con-
stant B = B(C, rk(F)) such that ‖f ∗ τ ‖ ≤ B‖f ‖.

Proof. Let R = 2 rk(F) − 1 and let C be the constant such that
��τ (д)�� ≤ C

R |д |

for all д ∈ F . We will �rst produce a constant C0 such that
��(f ∗ τ )(д)�� ≤

C0(|д|+1)
R |д |

for all д ∈ F .

Given two words д,h ∈ F we denote the common pre�x by д ∧ h. For

д ∈ F we set Pnд = {h ∈ F | ��д ∧ h�� = n}. These sets form a partition:

F = ∪
|д|
n=0P

n
д . Therefore we can write:

��(f ∗ τ )(д)�� ≤
∑
h∈F

��f (дh−1)τ (h)�� =
∑
h∈F

��f (h)τ (h−1д)��

=

|д|∑
n=0

∑
h∈Pnд

��f (h)τ (h−1д)��

≤

|д|∑
n=0

C
∑
h∈Pnд

��f (h)��
R |h |+|д|−n

=

|д|∑
n=0

C

R |д|

∑
h∈Pnд

��f (h)��
R |h |−n

.

(3.3.2)

For each n ∈ {0, . . . , ��д��} we let cn : F → {0, 1} be the characteristic func-

tion of the set Pnд . De�ne fn(h) = cn(h)f (h) and rn(h) = cn(h)
R |h |−n

. Clearly

‖fn‖ ≤ ‖f ‖. As for rn we �nd:

‖rn‖2 =
∑
h∈Pnд

1

R2(|h |−n) =
∞∑
k=0

∑
|h |=n+k
h∈Pnд

1

R2k
≤

∞∑
k=0

Rk
1

R2k
=

R

R − 1
.

Therefore, by the Cauchy–Schwartz inequality we have:

∑
h∈Pnд

��f (h)��
R |h |−n

=
∑
h∈F

��fn(h)rn(h)�� ≤ ‖fn‖ · ‖rn‖ ≤ ‖f ‖
( R

R − 1

)1/2
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Combining this with the the inequality in (3.3.2) we have:

��(f ∗ τ )(д)�� ≤
|д|∑
n=0

C

R |д|

∑
h∈Pnд

��f (h)��
R |h |−n

≤
C(��д�� + 1)

R |д|
‖f ‖

( R

R − 1

)1/2
≤
C0(��д�� + 1)

R |д|

as sought where C0 = C‖f ‖ �
R

R−1

�
1/2

. We then �nd:∑
д∈F

��(f ∗ τ )(д)��2 ≤ C2

0

∑
д∈F

(��д�� + 1)2
R2|д|

= C2

0

∞∑
n=0

∑
|д|=n

(��д�� + 1)2
R2|д|

≤ C2

0

∞∑
n=0

(R + 1)Rn−1 (n + 1)
2

R2n

≤ C2

0

(R + 1
R

) ∞∑
n=0

(n + 1)2
Rn

= C2

0

(R + 1
R

)
4R2 − 3R + 1

(R − 1)3
as desired. The existence of a constant B = B(C, rk(F )) such that ‖f ∗ τ ‖ ≤
B‖f ‖ is now clear as C0 is a constant times ‖f ‖. �

We record the following immediate properties of convolution.

Proposition 3.3.3. Let τ : F → C be an exponentially decaying function.
Then:

(1) ∀f1, f2 ∈ `
2(F): (f1 + f2) ∗ τ = f1 ∗ τ + f2 ∗ τ ,

(2) ∀f ∈ `2(F), λ ∈ C: (λ f ) ∗ τ = λ(f ∗ τ ) = f ∗ (λτ ),
(3) ∀f ∈ `2(F), д ∈ F : д · (f ∗ τ ) = (д · f ) ∗ τ , and
(4) ∀д,h ∈ F : (h ∗ τ )(д) = τ (h−1д).

3.4. The projection operator πH1(F). As stated in Section 3.2, we denote

the orthogonal projection πH1(F) : `2(E) → `2(E) by π and the edges εxi ∈
EX by εi . Further, for the remainder, set R = 2 rk(F) − 1.

The main result of this section is an explicit description of π . This is

the key ingredient of the second proof of Theorem 3.2.4 presented in Sec-

tion 3.5.

Theorem 3.4.1. If α ∈ `2(E), then πα(дεi) = 〈д−1 · α , ϒi〉.
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We �rst show that the formula in Theorem 3.4.1 de�nes an F–equivariant

bounded operator on `2(E). Verifying that the formula does indeed de-

scribe orthogonal projection occurs in a series of lemmas following the

proposition.

Proposition 3.4.2. Suppose α ∈ `2(E) and i = 1, . . . , rk(F).
(1) The function f : F → C de�ned by f (д) = 〈д−1 · α , ϒi〉 is in `2(F).
(2) The function ϒα : E → C de�ned by ϒα(дεi) = 〈д−1 ·α , ϒi〉 is in `2(E).
(3) The assignment α 7→ ϒα de�nes a bounded F–equivariant operator

on `2(E).
Proof. For j = 1, . . . , rk(F), de�ne component functions αj , ϒi, j : F → C by

αj(д) = α(дεj) and ϒi, j(д) = ϒi(дεj). Then αj , ϒi, j ∈ `
2(F) and |ϒi, j(д)| ≤ 1

R |д |

and hence is exponentially decreasing. Then:

f (д) = 〈д−1 · α , ϒi〉 =
∑
e∈E

α(дe)ϒi(e)

=

rk(F)∑
j=1

∑
h∈F

α(дhεj)ϒi(hεj) =
rk(F)∑
j=1

∑
h∈F

αj(дh)ϒi, j(h)

=

rk(F)∑
j=1

�
αj ∗ ϒi, j

�(д).

By Proposition 3.3.2, we have that each functionαj∗ϒi, j is square-summable,

hence so is f . This proves (1). Since we can view ϒα as a tuple of functions

as in (1), this proves (2) as well.

That ϒ de�nes a bounded operator follows from Proportions 3.3.2 and

3.3.3 and the above description. Equivariance follows from the observa-

tion:

ϒ(h · α)(дεi) = 〈д−1h · α , ϒi〉 = ϒα(h−1дεi) = h · (ϒα)(дεi).
This proves (3). �

The next three lemmas will show that ϒ = π , where π : `2(E) → `2(E)
is orthogonal projection onto H1(F).
Lemma 3.4.3. If β ∈ `2(V ) then ϒ(δβ) = 0.

Proof. ϒ(δβ)(дεi) = 〈д−1 · δβ, ϒi〉 = 〈δ (д−1 · β), ϒi〉 = 〈д−1 · β , ∂ϒi〉 = 0. �

Hence imδ ⊆ ker ϒ. The following averaging estimation is the key in-

gredient for showing that ϒ is the identity on cycles.
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Lemma 3.4.4. If α ∈ `2(E) and ∂α = 0, then for all д ∈ F , i = 1, . . . , rk(F)
and N ≥ 0:

N∑
n=0

∑
|e |i=n

α(дe)υi(e) = α(дεi) *
,
1 + 2

N∑
n=1

1

Rn
+
-
. (3.4.1)

Proof. To begin we claim that for n ≥ 2:∑
|e |i=n

α(дe)υi(e) = 1

R

∑
|e |i=n−1

α(дe)υi(e) (3.4.2)

To see this, �x an edge e with |e |i = n − 1 and enumerate the R edges

e1, . . . , eR adjacent to e with |ej |i = n for j = 1, . . . ,R where σ (ej) = −σ (e)
for j = 1, . . . , R−1

2
and σ (ej) = σ (e) for j = R+1

2
, . . . ,R. Since ∂α = 0 we

have:

α(дe) =
R∑

j= R+1
2

α(дej) −
R−1
2∑

j=1

α(дej) =
R∑
j=1

σ (ej)α(дej).

Multiplying this equation by
σ (e)
R |e |i+1

= 1

Rυi(e) = 1

σ (ej )υi(ej) we get:

1

R
α(дe)υi(e) =

R∑
j=1

α(дej)υi(ej) (3.4.3)

Equation (3.4.2) follows from (3.4.3) by summing over all edges with |e |i =
n − 1.

Then using induction on (3.4.2) we �nd:∑
|e |i=n

α(дe)υi(e) = 1

Rn−1

∑
|e |i=1

α(дe)υi(e).

The above argument for (3.4.2) also shows that the summation on the right

is exactly
2

Rα(дεi)υi(εi) = 2

Rα(дεi), the di�erence being that there are 2R
edges adjacent to εi whose edge distance to εi is 1 and that (3.4.3) holds for

each of the two subsets of size R. Hence for n ≥ 1 we have:∑
|e |i=n

α(дe)υi(e) = 2

Rn
α(дεi)

and so (3.4.1) holds. �

Lemma 3.4.5. If α ∈ `2(E) and ∂α = 0, then ϒα = α .
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Proof. Using Lemma 3.4.4 we �nd for any д ∈ F and i = 1, . . . , rk(F):
ϒα(дεi) = 〈д−1 · α , ϒi〉 =

∑
e∈E

α(дe)ϒi(e)

=

(R − 1
R + 1

) ∞∑
n=0

∑
|e |i=n

α(дe)υi(e)

= α(дεi)
(R − 1
R + 1

)
*
,
1 + 2

∞∑
n=1

1

Rn
+
-

= α(дεi)
(R − 1
R + 1

) (
1 +

2

R − 1

)
= α(дεi). �

From these lemmas, it follows that ϒ is orthogonal projection onto ker ∂.

Proof of Theorem 3.4.1. Lemma 3.4.3 shows that imδ ⊆ ker ϒ and Lemma 3.4.5

shows that ϒ is the identity on ker ∂. As `2(E) = ker ∂ ⊥ imδ we have that

ϒ is orthogonal projection onto ker ∂ = H1(F). �

3.5. Two proofs of Theorem 3.2.4. We now give two calculations show-

ing that the �rst `2–Betti number of F is rk(F) − 1; this is the content of

Theorem 3.2.4.

First proof of Theorem 3.2.4. The adjoint relation between ∂ and δ gives a

orthogonal direct sum decomposition:

`2(E) = ker ∂ ⊥ imδ .

By Theorem 2.1 we have thatδ is injective and so dimF (imδ ) = dimF (`2(F)) =
1. Thus:

dimF (H1(F)) = dimF (ker ∂) = dimF (`2(E)) − dimF (imδ ) = rk(F) − 1. �
Second proof of Theorem 3.2.4. We have πεj(дεi) = 〈д−1εj , ϒi〉 = ϒi(д−1εj) by

Theorem 3.4.1. Using (3.2.2) we have:

dimF (H1(F)) = traceF (π ) =
rk(F)∑
i=1

〈πεi , εi〉 =
rk(F)∑
i=1

ϒi(εi)

=

rk(F)∑
i=1

rk(F) − 1
rk(F) = rk(F) − 1. �

3.6. Weak isomorphisms between (`2(F))rk(F)−1 and H1(F). We have

now seen that dimF (H1(F)) = rk(F)−1. We conclude our analysis of H1(F)
by explicitly describing a weak isomorphism (`2(F))rk(F)−1 → H1(F). Re-

call, a bounded F–equivariant operatorU → V of Hilbert–F–modules is a
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weak isomorphism if it is injective with dense image. Using polar decom-

position, it can be shown that two weakly isomorphic Hilbert–F–modules

are isometrically isomorphic [1, Lemma 2.5.3].

The weak isomorphism we are interested in is the adjoint of the projec-

tion onto the �rst rk(F) − 1 component functions in (`2(F))rk(F).
Theorem 3.6.1. The operator P : (`2(F))rk(F) → (`2(F))rk(F)−1 de�ned by:

P(f1, . . . , frk(F)) = (f1, . . . , frk(F)−1) (3.6.1)

restricts to a weak isomorphism P : H1(F)→ (`2(F))rk(F)−1.
Proof. As dimF (H1(F)) = rk(F) − 1 = dimF ((`2(F))rk(F)−1), it su�ces to

show that P is injective on H1(F) [4, Lemma 1.13].

To this end, we suppose α = (0, . . . , 0, f ) ∈ H1(F), in other words, α ∈
ker P ∩ ker ∂. Then for each д ∈ F we have

0 = 〈∂α ,дv1〉 = 〈α ,δдv1〉 = f (дx−1
rk(F)) − f (д).

From this it follows that f (д) = f (дxn
rk(F)) for all n ∈ Z. Since∑

n∈Z

f (дxn
rk(F))2 ≤ ‖f ‖2 < ∞,

we must have f (д) = 0. As д ∈ F was arbitrary, we have f = 0 and so

α = 0. Thus ker P ∩ ker ∂ = {0} and so P is injective on H1(F). �

Remark 3.6.2. The operator P : H1(F) → (`2(F))rk(F)−1 is not surjective.

For instance (1, 0, . . . , 0) < im P . Indeed, if (1, 0, . . . , 0, f ) ∈ H1(F) = ker ∂
then arguing as in the proof of Theorem 3.6.1 we see that for all n > 0 that

f (x−n
rk(F)) = f (x−1

rk(F)) = f (1) + 1 = f (xn
rk(F)) + 1.

Such a function could not be square-summable.

We now seek to describe the adjoint P∗ : (`2(F))rk(F)−1 → H1(F). As in

the proof of Proposition 3.4.2, for i, j = 1, . . . , rk(F) we de�ne ϒi, j ∈ `
2(F)

by ϒi, j(д) = ϒi(дεj) where ϒi ∈ `
2(E) is the scaled i–uniform cycle from

De�nition 3.1.4. Then for β = (β1, . . . , βrk(F)−1) ∈ (`2(F))rk(F)−1 we de�ne

Qjβ =

rk(F)−1∑
i=1

βi ∗ ϒi, j .

We recall for convenience in the proof of Theorem 3.6.3 that

βi ∗ ϒi, j(h) =
∑
д∈F

βi(hд)ϒi, j(д−1) =
∑
д∈F

βi(hд)ϒi, j(д) = 〈h−1 · βi , ϒi, j〉.

Then as in Proposition 3.4.2, Qj : (`2(F))rk(F)−1 → `2(F) is a bounded F–

equivariant operator.
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Theorem 3.6.3. The adjoint P∗ : (`2(F))rk(F)−1 → H1(F) is given by:

P∗β = (Q1β, . . . ,Qrk(F)β) (3.6.2)

and is a weak isomorphism.

Proof. The adjoint of a weak isomorphism is always weak isomorphism, so

the content of the theorem is that the formula in (3.6.2) de�nes P∗. This is a

direct calculation essentially reproducing the fact the adjoint of convolving

against a function f is convolving against the conjugate f .

Fixα = (α1, . . . ,αrk(F)) ∈ H1(F) and β = (β1, . . . , βrk(F)−1) ∈ (`2(F))rk(F)−1.
By Theorem 3.4.1 we have that πα = α and so:

αi(д) = α(дεi) = πα(дεi) = 〈д−1 · α , ϒi〉 =
rk(F)∑
j=1

〈αj ,д · ϒi, j〉.

Using this we compute:

〈Pα , β〉 =
rk(F)−1∑
i=1

〈αi , βi〉 =
rk(F)−1∑
i=1

∑
д∈F

αi(д)βi(д)

=

rk(F)−1∑
i=1

∑
д∈F

*.
,

rk(F)∑
j=1

〈αj ,д · ϒi, j〉+/
-
βi(д)

=

rk(F)−1∑
i=1

rk(F)∑
j=1

∑
д∈F

*
,

∑
h∈F

αj(h)ϒi, j(д−1h)+
-
βi(д)

=

rk(F)∑
j=1

rk(F)−1∑
i=1

∑
h∈F

αj(h) *.
,

∑
д∈F

ϒi, j(h−1д)βi(д)+/
-

=

rk(F)∑
j=1

rk(F)−1∑
i=1

∑
h∈F

αj(h)〈βi ,h · ϒi, j〉

=

rk(F)∑
j=1

rk(F)−1∑
i=1

〈αj , βi ∗ ϒi, j〉 =
rk(F)∑
j=1

〈αj ,Qjβ〉 = 〈α , P∗β〉.

This proves the theorem. �
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