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Introduction

Groups and spaces go hand in hand. For a given
space, there are many groups associated to it. We
can consider the group of symmetries, that is, the
group of structure preserving bijections. Addition-
ally, there is the fundamental group and also the ho-
mology and cohomology groups to name a few more.
As pointed out by Hermann Weyl, these groups can
give “a deep insight” into a given space. An example
of this phenomenon is in the study of knots. Alge-
braic invariants in the form of groups show that the
trefoil knot cannot be unknotted for instance. See
Figure 1.

Figure 1: Groups show that these knots are distinct.

Geometric group theory takes a different perspec-
tive on this relationship between groups and spaces.
Rather than using the algebraic structure and prop-
erties of groups to study spaces, the main philosophy
of geometric group theory is the following.

Study groups using the topology and geome-
try of the spaces they act on.
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That is, groups are the central objects of study and
the techniques and tools used to investigate them are
dynamical, geometrical, and topological in nature.

In name, geometric group theory is quite new in
relation to other mathematical fields1. The founda-
tional essays by Gromov [Gro87, Gro93] introducing
the notion of hyperbolic groups and initiating the
study of finitely generated groups as metric spaces
sparked an enormous amount of research and estab-
lished lines of investigation that are still very active
today. Prior to the emergence of geometric group
theory, there were geometrical ideas present in group
theory in the works of Dehn, Whitehead, van Kam-
pen and others. Additionally, Thurston’s work on
3–manifolds showed how the geometry of a manifold
influences algebraic and algorithmic properties of its
fundamental group. It is Gromov’s essays though
that mark the beginning of where these ideas are the
forefront.

This article is intended to give an idea about how
the topology and geometry of a space influences the
algebraic structure of groups that act on it and how
this can be used to investigate groups. As you will
see, I take the approach I learned from my advi-
sor Mladen Bestvina of favoring illustrative examples
over general theory. As is true of any survey of a
mathematical field, many aspects and areas of geo-
metric group theory are not mentioned at all. The
final section includes a short list of books on geomet-
ric group theory for further reading.

1The earliest use of the “geometric group theory” I could
find was in reference to a symposium at Sussex University in
the summer of 1991.
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Groups and spaces

As mentioned above, geometric group theory uses
group actions on spaces to understand the group’s
structure. What type of information could one hope
to glean from an action? Are there always interesting
actions to study? We will take a look at both of these
questions now.

An example: SL(2,Z)

To give an illustration how the topology of a space
that a group acts on influences the group’s structure,
let’s take a look at an example of a group action that
appears in many areas of mathematics. We will con-
sider the group of 2× 2 matrices with integer entries
and determinant equal to 1. This group is called the
special linear group:

SL(2,Z) =
{[

a b
c d

]
| a, b, c, d ∈ Z and ad− bc = 1

}
.

Is SL(2,Z) finitely generated? That is, are there
finitely many matrices A1, . . . , An ∈ SL(2,Z) such
that any matrix M ∈ SL(2,Z) can be expressed as a
product M = A±1j1

· · ·A±1jk
? (Note, each Aj may ap-

pear multiple times.) The answer is “yes” and there
is an algebraic approach to this problem, but let’s
take a geometric perspective and consider an action
of SL(2,Z) on a metric space.

The space we will consider is the Farey complex
which is constructed as follows. First, we start with a
graph whose vertex set is the set of rational numbers
p
q—always expressed in lowest terms—along with an

additional point we denote 1
0 . Edges join two vertices

p
q and r

s if ps− qr = ±1. Figure 2 shows a portion of
this graph, known as the Farey graph.

As seen in Figure 2, the edges in the Farey graph
naturally form triangles. In fact, the vertices of any
such triangle always have the form p

q , r
s and p+r

q+s . For

instance, 1
0 ,

0
1 and 1

1 , and also 1
0 ,

1
1 and 2

1 . There is
an action of SL(2,Z) on the Farey graph defined by
permuting the vertices using the rule:[

a b
c d

]
· p
q

=
ap+ bq

cp+ dq

It is easy to check that two vertices p
q and r

s are

connected by an edge only if their images
[
a b
c d

]
· pq
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Figure 2: The Farey graph and Farey complex.

and
[
a b
c d

]
· rs are. Hence, this defines an action on the

Farey graph and by extension on the Farey complex,
which is the space we get by filling in the triangles in
the Farey graph.

You have mostly likely seen this space and action
before but under a different guise. Indeed, the Farey
complex gives a tessellation of the hyperbolic plane
by ideal triangles whose vertices in the upper half
plane model are either rational or ∞. Moreover, the
action described above is none other than the usual
action of 2×2 matrices with real entries and positive
determinant by fractional linear transformations of
the upper half plane. The conformal maps:

f(z) =
1− iz
z − i

and g(z) =
1 + iz

z + i

conjugate the two pictures. See Figure 3.
Now it is time to examine this action. Let ∆ denote

the triangle in the Farey complex with vertices 1
0 , 0

1
and 1

1 . We record the key properties of the action in
two claims.
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Figure 3: The Farey tessellation of the upper half
plane by ideal triangles.

Claim 1. For any triangle ∆′ in the Farey complex,
there is matrix M ∈ SL(2,Z) such that M∆ = ∆′.

Indeed, suppose the vertices of ∆′ are p
q , r

s and p+r
q+s

where ps− qr = 1. Take M = [ p r
q s ] and observe that

M∆ = ∆′.

Let A = [ 0 1
91 1 ]. Notice that A · 01 = 1

1 , A · 11 = 1
0

and A · 10 = 0
1 so that A∆ = ∆ and A acts on the

triangle ∆ by a rotation.

Claim 2. If M∆ = ∆, then M = Ak for some inte-
ger k.

Indeed, if M fixes ∆, then it must cyclically per-
mute the vertices 0

1 , 1
1 and 1

0 . Hence AkM fixes the
vertices 0

1 , 1
1 and 1

0 for some k. As the only confor-
mal map that fixes three points is the identity, we see
that AkM = ±I. The claim follows once we check
that A3 = −I.

Let B = [ 0 91
1 0 ] and let ∆p/q be the triangle that

shares an edge with ∆ and has the vertex p
q ∈

{ 911 ,
1
2 ,

2
1}. These are labeled in Figure 2. We ob-

serve that B∆ = ∆91/1. As A rotates ∆, we also find
that AB∆ = ∆1/2 and A2B∆ = ∆2/1.

We are now in the position to show that SL(2,Z) is
finitely generated by the matrices A and B. That is,
any matrix in SL(2,Z) can be expressed as a product
of A’s and B’s:

M = Am1Bn1 · · ·AmkBnk

for some integers mj , nj . Given M ∈ SL(2,Z) we
want to consider a path in the Farey complex from ∆

to M∆. What do we mean by path? Specifically, we
mean a sequence of triangles ∆ = ∆0, . . . ,∆k = M∆
where the triangles ∆j−1 and ∆j share an edge.

Now we proceed via induction on the length of
shortest path to M∆. Claim 2 handles the case
that this length is 0. Next, using a path ∆ =
∆0, . . . ,∆k = M∆ of minimal length we observe by
Claim 1 and induction that ∆k−1 = M0∆ where
M0 can be expressed as product of A’s and B’s.
Let’s hit the whole picture with M−10 : the trian-
gle ∆k−1 = M0∆ is sent to ∆ and the triangle
∆k = M∆ is sent to an adjacent triangle, i.e., one
of ∆91/1, ∆1/2, or ∆2/1. Assuming for simplicity that
M−10 M∆ = ∆91/1, which is equal to B∆, we find
that B−1M−10 M∆ = ∆. Claim 2 now shows that
B−1M−10 M = Ak and hence M = M0BA

k. Since
M0 can be expressed as a product of A’s and B’s, so
can M , showing that SL(2,Z) is finitely generated.

A theorem: characterizing finite gener-
ation

What did we actually use to prove finite generation?
The important topological property we used was the
path-connectedness of the Farey complex so that we
had a path from ∆ to M∆ to apply induction on.
The important dynamical property we used was the
existence of a transitive tiling for which the stabilizer
of a tile is finite and for which one tile meets only
finitely many other tiles. These dynamical consider-
ations naturally lead to the following definition.

Definition 1. An action of a group G on a metric
space (X, d) by isometries is geometric if it satisfies
the following two conditions:

1. (cocompact) there exists a compact set K ⊆ X
such that

⋃
g∈G gK = X; and

2. (properly discontinuous) for any compact set
Y ⊆ X, the set {g ∈ G | gY ∩ Y 6= ∅} is fi-
nite.

The requirement of a transitive tiling is captured
by the cocompact condition. The properly discontin-
uous condition captures both requirements that the
stabilizer of a tile is finite and that a tile meets only
finitely many tiles.
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Technical Sidenote (i.e. feel free to ignore):
The actions of SL(2,Z) on the Farey complex and
on the upper half plane are not geometric. For the
Farey complex the action is cocompact, but a tri-
angle intersects infinitely many other triangles at a
vertex, so the action is not properly discontinuous.
We got around this problem by only considering
triangles that meet along an edge—there are only
finitely many such. In the upper half plane the
action is properly discontinuous, but the action is
not cocompact. We can get around this by remov-
ing an equivariant collection of disjoint open disks
tangent to the rational points. In either setting,
the crucial point is that our notion of path ignores
the vertices/ideal points. There is a geometric ac-
tion lurking in the background here on the Farey
tree that will be explored later.

Here are some examples of geometric actions.

1. The group Zn acting by linearly independent
translations on Rn equipped with the Euclidean
metric.

2. More generally, any group of isometries of Rn

equipped with the Euclidean metric that leaves
a lattice Λ ⊂ Rn invariant and whose action on
the lattice has finitely many orbits.

3. The fundamental group π1(X) of a compact Rie-
mannian manifold X, possibly with boundary,
acting by deck transformations on its universal
cover X̃ equipped with the pull-back metric.

Arguing as we did for SL(2,Z), we can prove the
“if” direction of a geometric characterization of finite
generation.

Theorem 1. A group is finitely generated if and only
if it acts geometrically on a path-connected metric
space.

For the “only if” direction, we need to introduce
an important concept in geometric group theory: the
Cayley graph.

A space for every group

For a finitely generated group G we need to produce a
path-connected metric space that admits a geometric
action by G. This is similar to what is required to
prove Cayley’s theorem from classical group theory:
Every group is isomorphic to a permutation group.
In the classical setting, we need to produce a set that
admits a permutation action by our group. There is
only one choice, the set is the group G and the action
is left multiplication.

In our current setting, the idea is similar. The
metric space is built on top of the group, the extra
parts of the space come from a finite generating set.
The result is called a Cayley graph. Here are the
details.

Definition 2. Let G be a finitely generated group
and let S ⊆ G be a finite generating set. The Cayley
graph, denoted Γ(G,S), is the graph whose vertex
set is G and where there is an edge joining vertices
h1, h2 ∈ G if h−11 h2 ∈ S, i.e., h2 = h1s for some
generator s ∈ S.

The group G acts on Γ(G,S) by permuting the
vertices via left multiplication. If vertices h1, h2 ∈
G are adjacent, then so are the vertices gh1, gh2 as
(gh1)−1(gh2) = h−11 h2 and so the permutation action
on the vertices extends to the entire graph.

As S generates G, the Cayley graph Γ(G,S) is
path-connected. Figure 4 illustrates the path con-
necting the identity element of the group 1G to the
element g = s1s2 · · · sk where each sj belongs to
S ∪S−1. The key point is that s1 · · · sj is adjacent to
s1 · · · sj+1.

1G

s1

s1s2

s1s2 · · · sk−1

g = s1s2 · · · sk

Figure 4: A path in the Cayley graph.

Here are some examples of Cayley graphs.

1. Z and Z2: For Z, we can use S = {1} and for
Z2 we can use S = {[ 10 ] , [ 01 ]}. These graphs are

4



pictured in Figure 5. Other generating sets are
possible too, try drawing the graph Γ(Z, {2, 3}).
You can find this graph in the essay by Margalit
and Thomas [CM17, Office Hour 7].

−1 0 1 2
[ 00 ] [ 10 ]

[ 01 ] [ 11 ]

Figure 5: Cayley graphs for Z and Z2.

2. Sym(3): For the symmetric group on three el-
ements, we can use the generating sets S1 =
{(1 2), (2 3)} or S2 = {(1 2), (1 2 3)}. These
graphs are pictured in Figure 6 where elements
in Sym(3) are listed using cycle notation.

(1 3 2)(1 2)

( )

(1 3) (1 2 3)

(2 3)

(1 3 2)

(1 2)

( )

(2 3)

(1 2 3)

(1 3)

Figure 6: Cayley graphs for Sym(3).

3. F2: For the free group of rank two, we can use
a basis S = {a, b}. Recall that elements in F2

are in one-to-one correspondence to words in the
alphabet {a, a−1, b, b−1} that are reduced in the
sense that they do not contain aa−1, a−1a, bb−1

or b−1b. For example, a2b−1a−1b and b2a−2b2

represent elements in F2. The group operation
is concatenation followed by deletion of forbid-
den terms. As the reduced word representing

an element is unique and as paths in the Cay-
ley graphs read out a word representing an el-
ement as shown in Figure 4, there is a unique
non-backtracking path from 1F2

to any given el-
ement. Hence, the Cayley graph Γ(F2, {a, b}) is
a tree. A portion of this graph is pictured in
Figure 7.

1F2a−1 a

b−1

b

a2

ab−1

ab

a−2

a−1b−1

a−1b

ba−1 ba

b2

b−1a−1

b−1a

b−2

Figure 7: A Cayley graph for F2.

There is a metric on the vertices of Γ(G,S) defined
as the minimum number of edges in an edge-path be-
tween a given pair of vertices. This metric can be
extended to the points lying in edges by identifying
(in an equivariant way) each edge with the unit in-
terval [0, 1] ⊂ R. However for most applications in
geometric group theory, having a metric only on the
vertices suffices. The action of G on the Cayley graph
Γ(G,S) with this metric is by isometries.

The only item left to verify in Theorem 1 is that the
action of G on Γ(G,S) is geometric. We can easily
check these in turn.

1. (cocompact) Let K ⊆ Γ(G,S) be the union of
the vertices {1G}∪S together with the edges in-
cident on 1G and s for each s ∈ S. As S is finite,
K is compact and clearly

⋃
g∈G gK = Γ(G,S).
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2. (properly discontinuous) Suppose that Y ⊆
Γ(G,S) is a finite subgraph and let n denote
the number of vertices in Y . If gY ∩ Y 6= ∅
then gh1 = h2 for a pair of vertices h1, h2 in Y
and hence g = h2h

−1
1 . Thus the cardinality of

{g ∈ G | gY ∩ Y 6= ∅} is at most n2.

Groups and spaces with negative
curvature

In the previous section, we used a path-connected
space and a geometric action to derive an algebraic
consequence: finite generation. Path-connectivity is
a fairly weak topological property, however the no-
tion of a geometric action is quite restrictive. For
instance, by proper discontinuity the subgroup fix-
ing a given point must be finite. What can be gained
from actions on spaces with more requirements on the
topology and geometry, but perhaps fewer require-
ments on the dynamics of the action?

One geometric property that is particularly use-
ful is the notion of negative curvature. We will look
at two instances of negative curvature in geometric
group theory: trees and δ–hyperbolic spaces.

Actions on trees

Negative curvature, say in the hyperbolic plane, influ-
ences the geometry of a space in several ways: unique-
ness of geodesics, exponential growth in the volume
of balls, and a uniform bound on the diameter of an
inscribed circle to a triangle to name a few. To dis-
cuss the familiar notion of curvature from differential
geometry, a space requires more structure than just
an ordinary metric. Before discussing a notion of neg-
ative curvature expressed soley in terms of a distance
function on an arbitrary set, let’s consider an sim-
ple example of a metric space that has the properties
listed above for the hyperbolic plane: a tree.

To see an example of the usefulness of group actions
on trees, let’s go back to the example of SL(2,Z) and
think about its finite-order elements, i.e., matrices
for which some positive power is equal to the iden-
tity. We can quickly compute that A3 = −I = B2,

thus A6 = I and B4 = I and so A and B have fi-
nite order. Are there any others? There are obvious
ones of course. Powers of A and powers of B clearly
have finite order, as do their conjugates, CAkC−1

and CBkC−1 for any k ∈ Z and C ∈ SL(2,Z). But
is that it? The answer to this last question is “yes”
and we will see why using the action of SL(2,Z) on
the Farey tree.

This tree is obtained from the Farey complex. Di-
vide each triangle in the Farey complex into three
quadrilaterals that meet pairwise along one leg of a
tripod. Taken collectively these tripods form a tree,
which is called the Farey tree. See Figure 8.
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Figure 8: The Farey tree.

There are two types of vertices in the Farey tree:
(red) degree three coming from the center of a trian-
gle, and (green) degree two coming from an edge of a
triangle. Let v denote the vertex that corresponds to
the center of the triangle ∆ and let w denote the ver-
tex that corresponds to the edge in the Farey complex
between 0

1 and 1
0 . These are labeled in Figure 8.
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From our study of the action of SL(2,Z) on the
Farey complex, we conclude that every vertex in the
Farey tree is a translate of v or w. This follows from
Claim 1 and the fact that A cyclically permutes the
edges of ∆ and hence all of the vertices adjacent to
v. Additionally, we can conclude from Claim 2 that
the stabilizer of v is the cyclic subgroup of order 6
generated by A, and that the stabilizer of w is the
cyclic subgroup of order 4 generated by B.

An important property of an action on a tree is the
following claim.

Claim 3. Suppose that a group G acts on a tree. If
g ∈ G has finite order, then g has a fixed point.

The key fact here is that a finite set of points
x1, . . . , xn in a tree has a unique center, i.e., a point
c that minimizes the quantity

max{d(c, xj) | j = 1, . . . , n}.

The center is easy to characterize. Suppose that x1
and x2 maximize d(xj , xj′) for j, j′ = 1, . . . , n. One
can show that the center is the unique point c with
d(c, x1) = d(c, x2) = 1

2d(x1, x2). Now fix a point x
in the tree and let c be the center of the set O =
{x, gx, . . . , gn−1x} where n is the order of g. Since
the action is by isometries, we must have that gc is
the center of the set gO. But g permutes the points
in O, i.e., gO = O, and so gc = c.

Applying Claim 3 to the action of SL(2,Z) on the
Farey tree, we see if M ∈ SL(2,Z) has finite order,
then Mx = x for some point x in this tree. If M
fixes a point in the interior of an edge, then it must
fix one of the incident vertices as well since these
vertices have different degrees and cannot be inter-
changed by M . So we may assume that x is a ver-
tex of the Farey tree. As every vertex is a translate
of v or w, we have that x = Cv or x = Cw for
some matrix C ∈ SL(2,Z). In the former, we observe
that (C−1MC)v = C−1Mx = C−1x = v and so
M = CAkC−1 for some k ∈ Z. Similarly, in the lat-
ter, we conclude that M = CBkC−1 for some k ∈ Z.
Hence every finite-order element in SL(2,Z) is conju-
gate to a power of A or B. This is exactly what we
desired to show.

The action of SL(2,Z) on the Farey tree is geomet-
ric. The argument we gave shows that if a group acts
geometrically on a tree, then there are only finitely
many conjugacy classes of finite-order elements. In-
deed, by Claim 3 and since the action is cocom-
pact, any finite order element is conjugate into one of
finitely many stabilizer subgroups. Since the action
is properly discontinuous, each of these subgroups is
finite and so the result follows.

We can replace the assumption of proper discon-
tinuity of the action with the assumption that each
point stabilizer subgroup has finitely many conjugacy
classes of finite-order elements and reach the same
conclusion.

Theorem 2. Suppose G acts cocompactly on a tree.
If every point stabilizer has finitely many conjugacy
classes of finite-order elements, then so does G.

Theorem 2 illustrates a common paradigm in ge-
ometry group theory. If some property P holds for
groups acting geometrically on a certain type of met-
ric space, then the same should be true for a group
G acting on this same type of metric space so long as
certain subgroups (e.g., point stabilizers) have prop-
erty P. In other words, we should be able to promote
a property P from a collection of subgroups to the
whole group G if we can find the appropriate space
where these subgroups are the point stabilizers.

This idea suggests a useful strategy. Suppose you
have some family of groups that fit into a hierarchy:
G0, G1, G2, . . . where the groups in G0 act geometri-
cally on a certain type of metric space and the groups
in Gk also act on this same type of metric space with
point stabilizers belonging to Gk−1. If we can verify
the above paradigm for this type of metric space, this
gives an inductive way to show that all the groups in
this family have some particular property or struc-
ture. In the next section, we will mention an instance
where this strategy has been particularly fruitful: the
mapping class group of an orientable surface.

Actions on δ–hyperbolic spaces

Actions on trees are nice to work with, but they form
a fairly restrictive class of groups. There are many
interesting and natural groups in which every action
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on a tree has a global fixed point. For example, this
is true for SL(n,Z) when n ≥ 3. Surely, not much
can be gained in general from actions with a global
fixed point.

Gromov’s influential essay [Gro87] introduced a no-
tion of negative curvature that unifies essential prop-
erties of the hyperbolic plane, trees and small cancel-
lation groups—a thoroughly studied class of groups
explored in the latter half of the 20th century in
which geometric notions and techniques were start-
ing to gain traction. The idea behind Gromov’s def-
inition of a δ–hyperbolic space is to take one of the
useful consequences of negative curvature from the
hyperbolic plane and use it as a definition for a met-
ric space. Gromov gave such a definition solely us-
ing a metric d on an arbitrary set X, but the most
common formulation used—and one that applies to
almost all the spaces one comes across in geomet-
ric group theory—requires a geodesic metric space,
which is defined as follows. A geodesic in a metric
space (X, d) is a function p : Y → X where Y is a
connected subset of R such that d(p(s), p(t)) = |t−s|
for all s, t ∈ Y . A geodesic metric space is a met-
ric space (X, d) such that for all x, y ∈ X, there is a
geodesic p : [0, L] → X with p(0) = x and p(L) = y.
A connected graph, in particular the Cayley graph of
a finitely generated group, is a geodesic metric space.

There are many equivalent formulations of a δ–
hyperbolic metric space using geodesic triangles, di-
vergence of geodesics, or nearest point projections
to geodesics. We will state the most common for-
mulation using geodesic triangles, which Gromov at-
tributed to Rips. In the statement, [a, b] represents
any geodesic in X from a to b.

Definition 3. Let (X, d) be a geodesic metric space.
A geodesic triangle ∆(a, b, c) is δ–thin if the δ–
neighborhood of any two of the edges contains the
third. That is, for all x ∈ [a, c] there is an x′ ∈
[a, b] ∪ [b, c] where d(x, x′) ≤ δ. A δ–hyperbolic space
is a geodesic metric space where every geodesic tri-
angle is δ–thin.

The key point in the definition is that the same δ
works for every geodesic triangle, no matter how long
the sides are. See Figure 9.

Here are some examples of δ–hyperbolic spaces.

δ

a

b

c

Figure 9: A δ–thin triangle.

1. A tree is 0–hyperbolic since every geodesic tri-
angle is a tripod and so any side is contained in
the union of the other two. See Figure 10. We
think of thinner triangles indicating the space
being more negatively curved—this is true for
scalar curvature in Riemannian geometry—and
so in this sense, trees are negatively curved in
the extreme.

a

b

c

Figure 10: A typical geodesic triangle in a tree.

2. The hyperbolic plane is log(1 +
√

2)–hyperbolic.
As every geodesic triangle is contained in an
ideal triangle, we only have to compute δ for an
ideal triangle, which is a fun exercise.

3. The Farey graph is 1–hyperbolic. This follows as
the removal of any edge and its incident vertices
disconnects the Farey graph.
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1+i
2

i√
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Figure 11: Ideal triangles in the the hyperbolic plane
are log(1 +

√
2)–thin.

For contrast, R2 with the Euclidean metric is not
δ–hyperbolic for any δ. Indeed, the geodesic triangle
with vertices (0, 0), (n, 0) and (0, n) is δ–thin only for
δ ≥ n/2. To see this, consider the point (n/2, n/2).

The typical questions one may try to answer us-
ing actions on δ–hyperbolic spaces often fit into the
following categories.

1. Algorithmic: When do two words in a generat-
ing set represent the same element or conjugate
elements?

2. Local-to-global: Are paths in the Cayley graph
that are locally geodesics globally geodesics as
well?

3. Rigidity: If two groups have geometrically sim-
ilar Cayley graphs, are the groups algebraically
similar? Can we characterize homomorphisms to
and from the group?

We will discuss in turn geometric actions and other
types of actions on δ–hyperbolic spaces.

Geometric actions on δ–hyperbolic spaces

A metric space is proper if closed balls are compact.
A group G is hyperbolic if it acts geometrically on
a proper δ–hyperbolic space2. Free groups and fun-
damental groups of closed hyperbolic manifolds are

2In the literature, these groups are sometimes referred to
as negatively curved, word hyperbolic or Gromov hyperbolic.

hyperbolic groups. It is fair to ask how common hy-
perbolic groups are given that we started this sec-
tion noticing that useful tree actions do not always
exist. Gromov introduced a model of a “random
finitely presented group” that includes a parameter
0 < d < 1 called the “density” that controls the
number of relators in terms of the number of gener-
ators [Gro93, Chapter 9]. When d < 1/2, Gromov
showed that a random group is infinite and hyper-
bolic. (For those curious, when d > 1/2 a random
group has at most two elements.) Thus, it is fair to
say that hyperbolic groups are quite ubiquitous.

An equivalent definition of a hyperbolic group is
that G is finitely generated and the Cayley graph
Γ(G,S) is δ–hyperbolic for some finite generating
set S ⊆ G. Moreover, “some” in the previous
sentence can be replaced with “every.” Hyperbolic
groups satisfy a long list of useful properties and be-
sides Gromov’s original essay, there are many com-
prehensive works focused on these groups. See for
instance the notes edited by Short [ABC+91], the
chapters by Bridson and Haefliger [BH99, Chap-
ters III.H and III.Γ], and the references within these
works.

As hyperbolic groups are defined by a geometric
condition (in several equivalent ways), from their in-
ception researchers have wondered if there is an alge-
braic characterization. It is not too difficult to find
algebraic obstructions. One of the first usually en-
countered involves the centralizer of an infinite-order
element. If G is a hyperbolic group and g ∈ G has
infinite order, then 〈g〉, the cyclic subgroup generated
by g, has finite index in CG(g), the centralizer of g.
Recall, the centralizer of g is the subgroup of G con-
sisting of elements h ∈ G with hg = gh. The idea
behind this fact nicely illustrates a typical geometric
argument using the δ–thin triangle condition.

Suppose that hg = gh and consider the four ver-
tices 1G, gk, hgk, and h in the Cayley graph Γ(G,S)
for a large k. The fact that hgk = gkh implies that
these four points lie on a rectangle. The horizontal
sides are formed by a geodesic [1G, g

k] and its trans-
late by h, the geodesic [h, hgk]. To get the vertical
sides, use a geodesic [1G, h] and its translate by gk.
The translate by gk gives a geodesic from gk to gkh,
but this latter point is exactly hgk by the commutiv-
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ity assumption. See Figure 12.

1G gk

h hgk

gm

hgn

x

y

≤ δ

≤ δ

≤ L

≤ L

Figure 12: A commuting rectangle in Γ(G,S).

There is a constant L so that any point on [1G, g
k]

is within L of gj for some j = 0, . . . , k. Likewise,
any point on [h, hgk] is within L of hgj for some
j = 0, . . . , k. Now let x be the midpoint of the
geodesic [1G, g

k]. By considering the two geodesic
triangles ∆(1G, g

k, hgk) and ∆(1G, hg
k, h) pictured

in Figure 12, we see that x is within 2δ of a point y
that lies on one of other three sides of the rectangle.
By choosing k large enough, we can ensure that y
lies on the geodesic [h, hgk] as shown in Figure 12.
We have d(x, gm) ≤ L and d(y, hgn) ≤ L for some
0 ≤ m,n ≤ k which gives

d(1G, hg
n−m) = d(gm, hgn)

≤ d(gm, x) + d(x, y) + d(y, hgn)

≤ 2L+ 2δ.

Hence the coset h〈g〉 ⊆ CG(g) has an element whose
distance from 1G is at most 2L+2δ. As there are only
finite many such elements and as distinct cosets are
always disjoint, there are only finitely many cosets.

As a consequence, no subgroup of a hyperbolic
group can be isomorphic to Z2. In several classes
of geometrically defined groups, this turns out to be
the only obstruction to hyperbolicity. For instance,
this is true for the class of fundamental groups of
closed 3–manifolds. In general, there is another al-
gebraic obstruction to consider. Hyperbolic groups
cannot contain a subgroup isomorphic to one of the

Baumslag–Solitar groups:

BS(m,n) = 〈a, t | tamt−1 = an〉.

The notation here means that BS(m,n) is generated
by two elements a and t and the only relation they
satisfy is that t conjugates am to an. This is a very
interesting class of groups that includes Z2, which
is BS(1, 1), and the fundamental group of the Klein
bottle, which is BS(1,−1).

The reason hyperbolic groups cannot contain sub-
groups isomorphic to a Baumslag–Solitar group re-
lies on the two facts that (1) for k ≥ 1 the subgroup

〈ak, tk〉 ⊆ BS(m,n) is never free as tkakm
k

t−k =

akn
k

, whereas (2) for infinite-order elements g, h ∈ G
in a hyperbolic group, the subgroup 〈gk, hk〉 is free
for some large k.

It was an open question until recently if this is
essentially the only obstruction. Specifically, is a
group G for which there exists a finite Eilenberg–
MacLane space K(G, 1) and that does not contain
a subgroup isomorphic to BS(m,n) necessarily hy-
perbolic? Brady gave counterexamples without the
finiteness assumption [Bra99]. These examples were
difficult to construct. They arise as subgroups of hy-
perbolic groups and hence do not have subgroups iso-
morphic to Baumslag–Solitar groups. The difficult
part in the construction is showing these subgroups
are not hyperbolic. Brady does so by showing they
do not satisfy an algebraic finiteness condition, called
F2, known to be satisfied by hyperbolic groups. As
the existence of a finite K(G, 1) implies F2 and also
implies additional algebraic finiteness conditions sat-
isfied by hyperbolic groups, a positive answer to the
above question seemed plausible. Recently, Italiano,
Martelli and Migliorini constructed a subgroup of a
hyperbolic group that is not hyperbolic but does have
a finite K(G, 1), answering the above question in the
negative [IMM]. The hyperbolic group they construct
is a quotient of the fundamental group of a finite vol-
ume cusped hyperbolic 5–manifold.

Other actions on δ–hyperbolic spaces

There are many natural groups that contain sub-
groups isomorphic to Z2 and hence cannot be hy-
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perbolic. Can we still use negative curvature to in-
vestigate these groups? Let’s relax the condition of
a geometric action, the requirement of a proper met-
ric space, and consider an example of an important
group in low-dimensional topology.

The mapping class group MCG(Σ) of an orientable
surface Σ, possibly with boundary, is the the group of
orientation preserving homeomorphisms of Σ modulo
isotopy. That is, two homeomorphisms of Σ deter-
mine the same mapping class if one can be contin-
uously deformed to the other so that every interme-
diate map along the way is also a homeomorphism.
When Σ has non-empty boundary, the homeomor-
phisms and the isotopies need to be the identity on
each boundary component. To simplify the discus-
sion, we will assume that Σ is compact. This group
appears in the study of 3–manifolds, algebraic ge-
ometry, cryptography, symplectic geometry, dynam-
ics and configuration spaces. Using homeomorphisms
supported on disjoint subsurfaces in Σ, it is easy to
find subgroups isomorphic to Z2 in most mapping
class groups. Thus MCG(Σ) is not hyperbolic in gen-
eral.

The mapping class group acts on the curve graph
C(Σ). A simple closed curve is an embedding of the
circle S1 → Σ that does not bound a disk nor an an-
nulus in Σ (the latter only occurs when Σ has bound-
ary). The curve graph is the graph whose vertex set is
the set of isotopy classes of simple closed curves and
two such [c0], [c1] are joined by an edge if they have
disjoint representatives. In Figure 13 some curves on
Σ are shown along with the corresponding subgraph
of C(Σ). A mapping class [f ] acts on a vertex [c] in
the curve graph by sending the simple closed curve
to its image: [f ] · [c] = [f(c)]. Homeomorphisms take
disjoint curves to disjoint curves so this extends to
an action on C(Σ) as well.

When the genus of Σ is equal to 1, i.e., when Σ is
a torus S1 × S1, any two non-isotopic simple closed
curves necessarily intersect and so the above defition
results in a graph with no edges. In this case the
definition is altered slightly, [c0], [c1] are joined by
an edge if they have representatives that intersect
once. Let’s take a closer look at this curve graph.
Any simple closed curve on the torus is isotopic to
one that winds p times around the first S1 factor

c0

c1
c2

c3 c4

c0

c1

c2

c3

c4

Figure 13: A portion of the curve graph for a genus
2 surface.

and q times around the second S1 factor where p and
q are relatively prime. As the orientation does not
matter, we can assume that q is positive. That is,
isotopy classes of simple closed curves on the torus
are parameterized by the set of rational numbers p

q

along with an additional element 1
0 . Moreover, the

number of times the simple closed curves p
q and r

s

intersect is |ps− qr|.
Sound familiar? That’s right, the curve graph of

the torus is the Farey graph! In fact, the mapping
class group of the torus is isomorphic to SL(2,Z) and
the two actions are the same. The action of SL(2,Z)
on the Farey graph illustrates some of the essential
properties of C(Σ) and the action of MCG(Σ) on
C(Σ).

First, as we observed for the Farey graph, the curve
graph is δ–hyperbolic. This amazing fact was proved
by Masur and Minsky [MM99] and has been reproved
a number of times since. (The best estimate on δ was
given by Hensel, Przytycki and Webb who showed
that δ ≤ 17 [HPW15].) It is impossible to overstate
the influence of this result on the study of the map-
ping class group, the geometry of 3–manifolds and
geometric group theory in general.

Second, the action is not properly discontinuous.
Indeed, the vertex stabilizers are infinite. This not a
bug though, but a feature! Homeomorphisms that fix
a simple closed curve c are actually homeomorphisms
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of the surface obtained by cutting open along c. Thus
the stabilizer of a vertex in C(Σ) is the mapping class
group of a surface Σ′, possibly disconnected, whose
components are simpler in the sense that the genus
or the number of boundary components is fewer than
that of Σ.

Taken together, this setting fits in to the hier-
archy strategy mentioned after Theorem 2 and the
number of applications are extremely numerous. I
will mention one here that ties back to the begin-
ning of the article: finite generation. Using the facts
that the curve graphs are path-connected and that
the stabilizers of vertices in the curve graph are, by
induction, finitely generated, it can be shown that
the mapping class group of any orientable surface is
also finitely generated. That is, we promote finite
generation from the stabilizers to whole group using
the fact that the space is path-connected. The base
case for the induction is when the surface has genus
1 and a single boundary component. The mapping
class group of this surface is SL(2,Z)—the group we
started our journey with! This strategy was orginally
employed by Dehn and he found a specific generating
set for the mapping class group analogous to elemen-
tary matrices. For complete details, and much more
on mapping class groups, see the text by Farb and
Margalit [FM12].

Other useful properties and features of the map-
ping class group acting on the curve graph have been
identified, isolated and applied to the study of other
groups. These include the notion of a WPD ele-
ment by Bestvina and Fujiwara [BF02], the notion
of a projection complex by Bestvina, Bromberg and
Fujiwara [BBF15], the notion of an acylindrical ac-
tion by Osin [Osi16] and the notion of a hierarchi-
cally hyperbolic group/space by Behrstock, Hagen and
Sisto [BHS17]. The common element of each of these
new tools is to exploit negative curvature in certain
directions of the group. As in the case of the map-
ping class group acting on the curve graph, the ap-
plications to a variety of classes of groups have been
numerous.

Conclusion and further reading

I hope the above gives you an idea of how the topol-
ogy and geometry of a space that a group acts on
can influence its algebraic properties and structure.
Geometric group theory is a growing field. This is in
part due to the large number of questions the field
generates regarding the geometry of finitely gener-
ated groups, but the field has also seen an increase in
interest as a result of its applications to other areas of
mathematics. A striking example of this is the recent
resolution of the Virtual Haken Conjecture in hyper-
bolic geometry. This was proved by Agol [Ago13]
using tools from geometric group theory created by
Scott, Sageev, Wise and others. See the survey arti-
cle by Bestvina [Bes14] for an excellent overview of
this connection.

The concept of δ–hyperbolicity is but one aspect of
geometric group theory. There are areas of geometric
group theory invoking tools from algebra (algebraic
geometry, homological algebra) analysis (Lp–spaces,
C∗ and von Neumann algebras), dynamics (entropy,
topological Markov chains), geometry (isoperimetric
functions, Lie theory) and topology (dimension, frac-
tals). Below is a selection of books on geometric
group theory for those curious to learn more, listed
by publication date.

1. Metric Spaces of Non-positive Curvature by
Martin Bridson and André Haefliger [BH99]:
Comprehensive reference text focusing on vari-
ous notions of non-positive curvature in metric
spaces and groups.

2. Topics in Geometric Group Theory by Pierre de
la Harpe [dlH00]: An introduction to groups as
geometric objects including a multitude of ex-
amples and a broad investigation on the notion
of growth in groups.

3. A Course in Geometric Group Theory by Brian
Bowditch [Bow06]: Introductory text based on
a course taught by the author with an in depth
treatment of hyperbolic groups. The audience is
advanced undergraduates and beginning gradu-
ate students.
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4. Office Hours with a Geometric Group Theorist
edited by Matt Clay and Dan Margalit [CM17]:
A collection of essays written by researchers on
select topics in geometric group and central ex-
amples such as Coxeter groups and braid groups
targeted to advanced undergraduates and begin-
ning graduate students.

5. Geometric Group Theory by Clara Löh [Löh17]:
Introductory text on geometric group theory
targeted to advanced undergraduates and be-
ginning graduate students. Fundamental top-
ics such as quasi-isometry, boundaries and
amenable groups are discussed.

6. Geometric Group Theory by Cornelia Druţu and
Michael Kapovich [DK18]: Comprehensive text
containing proofs of several fundamental results
in geometric group theory including the Tits al-
ternative and Gromov’s theorem on polynomial
growth. The audience is advanced graduate stu-
dents and researchers in the field.
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[Löh17] Clara Löh, Geometric group theory, Universi-
text, Springer, Cham, 2017. An introduction.
MR3729310

[MM99] Howard A. Masur and Yair N. Minsky, Geometry
of the complex of curves. I. Hyperbolicity, Invent.
Math. 138 (1999), no. 1, 103–149. MR1714338
(2000i:57027)

[Osi16] D. Osin, Acylindrically hyperbolic groups, Transac-
tions of the American Mathematical Society 368
(2016), no. 2, 851–888. MR3430352

13

http://www.ams.org/mathscinet-getitem?mr=1170363
http://www.ams.org/mathscinet-getitem?mr=3104553
http://www.ams.org/mathscinet-getitem?mr=3415065
http://www.ams.org/mathscinet-getitem?mr=3119822
http://www.ams.org/mathscinet-getitem?mr=1914565
http://www.ams.org/mathscinet-getitem?mr=1914565
http://www.ams.org/mathscinet-getitem?mr=1744486
http://www.ams.org/mathscinet-getitem?mr=1744486
http://www.ams.org/mathscinet-getitem?mr=3650081
http://www.ams.org/mathscinet-getitem?mr=2243589
http://www.ams.org/mathscinet-getitem?mr=3645425
http://www.ams.org/mathscinet-getitem?mr=3753580
http://www.ams.org/mathscinet-getitem?mr=1786869
http://www.ams.org/mathscinet-getitem?mr=1786869
http://www.ams.org/mathscinet-getitem?mr=2850125
http://www.ams.org/mathscinet-getitem?mr=919829
http://www.ams.org/mathscinet-getitem?mr=919829
http://www.ams.org/mathscinet-getitem?mr=1253544
http://www.ams.org/mathscinet-getitem?mr=1253544
http://www.ams.org/mathscinet-getitem?mr=3336835
http://arxiv.org/abs/2105.14795
http://www.ams.org/mathscinet-getitem?mr=3729310
http://www.ams.org/mathscinet-getitem?mr=1714338
http://www.ams.org/mathscinet-getitem?mr=1714338
http://www.ams.org/mathscinet-getitem?mr=3430352

