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Abstract. Generalized Baumslag–Solitar groups (GBS groups) are groups that
act on trees with infinite cyclic edge and vertex stabilizers. Such an action is de-
scribed by a labeled graph (essentially, the quotient graph of groups). This paper
addresses the problem of determining whether two given labeled graphs define iso-
morphic groups; this is the isomorphism problem for GBS groups. There are two
main results and some applications. First, we find necessary and sufficient con-
ditions for a GBS group to be represented by only finitely many reduced labeled
graphs. These conditions can be checked effectively from any labeled graph. Then
we show that the isomorphism problem is solvable for GBS groups whose labeled
graphs have first Betti number at most one.

1. Introduction

A generalized Baumslag–Solitar group (or GBS group) is a group that acts on a tree
with infinite cyclic edge and vertex stabilizers.2 The tree (together with the group
action) is called a GBS tree. A GBS tree can be described by a labeled graph, which is
a connected graph whose oriented edges are each labeled by a non-zero integer. This
information is enough to specify a graph of groups encoding the GBS tree.

A GBS group G may have many labeled graph descriptions. Even if one restricts
to reduced labeled graphs, which are in some sense the simplest ones, there may be
infinitely many distinct such graphs defining G. It can also happen that there is only
one reduced graph, or finitely many. In these latter cases, useful information about
Out(G) can be obtained, as in [8, 15, 14]. Other aspects of GBS groups have been
studied by Kropholler, Whyte, Levitt, and others. See [10, 11, 16, 2, 6, 7] for details
on various algebraic and geometric properties of GBS groups.

The variety of labeled graph descriptions of GBS groups is partly what makes them
interesting. For instance, they demonstrate the extent to which JSJ decompositions
of groups can fail to be unique. On the other hand, this variety can also be a source
of difficulty, such as when studying automorphisms. A given labeled graph need not
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2In this paper we will only consider finitely generated GBS groups, so finite generation will be

added to the definition; see Section 2.2.
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be invariant, for instance. Even the basic problem of recognizing a given GBS group
from one of its labeled graphs is not at all clear.

The isomorphism problem for GBS groups is the problem of determining algo-
rithmically whether two given labeled graphs define isomorphic GBS groups. This
problem has only been shown to be solvable in limited special cases. It is trivially
solvable for the rigid GBS groups, which are those having a unique reduced labeled
graph. These groups were characterized in [13] (see also [8, 15, 5]).

Levitt showed that the isomorphism problem is solvable in the case of GBS groups
G such that Out(G) does not contain a non-abelian free group [14]. He also solved
the isomorphism problem for 2-generator GBS groups [12]. Both of these results rely
on having an explicit characterization of the class of groups being considered.

In [7] the isomorphism problem was solved for GBS groups whose modular groups
contain no integers other than ±1. Equivalenty [14], these are the GBS groups not
containing any solvable Baumslag–Solitar group BS(1, n) with n > 1. It is worth
recalling the main steps of the proof. First it was shown that any two such graphs are
related by slide moves, without leaving the set of reduced graphs. Then it was shown
that such a group is represented by only finitely many reduced labeled graphs. Thus,
this set can be searched and enumerated effectively, and membership is decidable.

For the general isomorphism problem, it is useful to understand the space of reduced
labeled graphs related to a given one by sequences of slide moves. We want to know
whether this space is infinite, and whether it includes all reduced labeled graphs for
the given group. To this end, there is a property of edges that plays a key role: edges
can be mobile or non-mobile (see Definition 3.12). One of our main technical results
is Corollary 3.24, which shows that in any sequence of slide moves, the non-mobile
edges may be slid first and one at a time. From this we deduce information on the
slide space of a labeled graph, including our first main result:

Theorem 1.1. Let G be a GBS group other than BS(1, n), represented by a reduced
labeled graph Γ. Then G has finite reduced labeled graph space if and only if Γ has no
mobile edges.

We also show that mobility of edges can be tested algorithmically (Remark 3.13),
so the property of the theorem is decidable. (The case of BS(1, n) is clear as well:
the reduced labeled graph is unique if n 6= −1, and BS(1,−1) has two reduced
labeled graphs.) One consequence of Theorem 1.1 is Theorem 3.29, which solves the
isomorphism problem in the case where one labeled graph has no mobile edges.

Next we consider the case of GBS groups whose labeled graphs have first Betti
number one. (The Betti number zero case is covered by [7].) The primary goal of the
rest of the paper is the following theorem:

Theorem 1.2. There is an algorithm which, given two labeled graphs, one of which
has first Betti number at most one, determines whether the two GBS groups are
isomorphic.



GENERALIZED BAUMSLAG-SOLITAR GROUPS 3

These are two cases, which behave rather differently: the ascending case and the
non-ascending case. In the ascending case, there is a structure theorem (Theorem
4.19) which says that the group is uniquely determined by certain invariants, which
can be computed by putting the labeled graph into a normal form. These invariants
are defined and proved invariant with the aid of Theorem 1.1 of [4], which shows
that any two reduced labeled graphs are related by slide, induction, and A ±1–moves
between reduced labeled graphs (see Section 2.2 for the definitions of these moves).

The non-ascending case is somewhat simpler, since any two reduced labeled graphs
representing the same group are related by slide moves. (In particular, one may keep
track of individual edges.) However, even though we can define normal forms, they
are much less rigid than in the ascending case. For instance, there is no canonical
edge with which to compare other edges, unlike ascending normal forms.

We show that given G, there are only finitely many reduced labeled graphs in nor-
mal form, and these can be enumerated effectively. The solution to the isomorphism
problem is then similar to the case proved in [7].

2. Preliminaries

2.1. Deformation spaces. A graph Γ is given by (V (Γ), E(Γ), o, t, )̄ where V (Γ)
are the vertices, E(Γ) are the oriented edges, o, t : E(Γ) → V (Γ) are the originating
and terminal vertex maps and ¯: E(Γ) → E(Γ) is a fixed point free involution, which
reverses the orientations of edges. An edge path γ = (e0, . . . , ek) is a sequence of edges
such that t(ei) = o(ei+1) for i = 0, . . . , k − 1. A loop is an edge e ∈ E(Γ) such that
o(e) = t(e). A geometric edge is a pair of the form {e, ē}.

Let G be a group. A G–tree is a simplicial tree T together with an action of G
by simplicial automorphisms, without inversions (that is, ge 6= ē for all g ∈ G, e ∈
E(T )). Two G–trees are considered equivalent if there is a G–equivariant isomorphism
between them. The quotient graph T/G has the structure of a graph of groups with a
marking (an identification of G with the fundamental group of the graph of groups).

Given a G–tree T , a subgroup H ⊆ G is elliptic if it fixes a point of T . There
are two moves one can perform on a G–tree without changing the elliptic subgroups,
called collapse and expansion moves; they correspond to the natural isomorphism
A ∗B B ∼= A. The exact definition is as follows.

Definition 2.1. An edge e in a G–tree T is collapsible if Ge = Go(e) and its endpoints
are not in the same orbit. If one collapses {e, ē} and all of its translates to vertices,
the resulting G–tree is said to be obtained from T by a collapse move. The reverse
of this move is called an expansion move.

A G–tree is reduced if it does not admit a collapse move. An elementary defor-
mation is a finite sequence of collapse and expansion moves. Given a G–tree T , the
deformation space D of T is the set of all G–trees related to T by an elementary
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deformation. If T is cocompact then D is equivalently the set of all G–trees having
the same elliptic subgroups as T [5].

2.2. Generalized Baumslag–Solitar groups. A group G that acts on a tree with
infinite cyclic stabilizers is called a generalized Baumslag–Solitar group (or GBS
group). In this paper, for simplicity, we also require G to be finitely generated (this
convention is not followed in [5, 6, 7]). The tree is called a GBS tree. In the quotient
graph of groups, every vertex and edge group is isomorphic to Z, and each inclusion
map Ge ↪→ Go(e) is given by multiplication by a non-zero integer. This data can be
effectively represented in a labeled graph. Specifically, a labeled graph is a pair (Γ, λ)
where Γ is a finite connected graph and λ : E(Γ) → Z − {0} is a function, called
the labeling. Given a choice of generators of Ge and Go(e), the map Ge ↪→ Go(e) is
multiplication by λ(e). Replacing a generator of an edge group Ge by its inverse
interchanges the signs of λ(e) and λ(ē); replacing a generator of a vertex group Gv

by its inverse interchanges the signs of λ(e) for all edges e originating at v. These
operations are called admissible sign changes. This is the only ambiguity in the labels
of a labeled graph. We will sometimes refer to (Γ, λ) simply as Γ.

A G–tree is elementary if there is a G-invariant point or line, and is non-elementary
otherwise. By [6, Lemma 2.6], a GBS tree is elementary if and only if the group is
isomorphic to Z, Z×Z, or the Klein bottle group. Thus a GBS group not isomorphic
to one of these three groups is called a non-elementary GBS group.

In a non-elementary GBS group, the elliptic subgroups arising from any GBS tree
are characterized algebraically [6, Lemma 2.5]. Therefore, any two such G–trees lie
in the same deformation space. In particular, any two labeled graphs representing
the same non-elementary group are related by an elementary deformation. Whenever
we speak of a deformation space for a non-elementary GBS group, we will always
be referring to this canonical deformation space. For a description of this canonical
deformation space associated to the classical Baumslag–Solitar groups BS(p, q), see
[2]. Unless otherwise stated, all GBS groups considered here will be assumed to be
non-elementary.

In a labeled graph, a loop e with label ±1 is called an ascending loop. It is a strict
ascending loop if λ(ē) 6= ±1. A loop e is a virtual ascending loop if λ(e) divides
λ(ē), and is a strict virtual ascending loop if, in addition, λ(ē) 6= ±λ(e). A GBS
deformation space is ascending if it contains a GBS tree whose labeled graph has a
strict ascending loop. We also say that G is ascending. Otherwise the deformation
space (or the group) is called non-ascending.

Now we define various moves between GBS trees, all of which are elementary defor-
mations. The moves in Definition 2.2 are discussed more fully (in the general setting
of G–trees) in [7]. In particular, slides and inductions can be factored as an expansion
followed by a collapse. A general discussion of A ±1–moves can be found in [4].
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In the diagrams below, each label λ(e) is pictured next to the endpoint o(e). We
begin with the elementary moves, which look as follows (modulo admissible sign
changes):
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Thus a GBS tree is reduced if and only if its labeled graph does not contain an edge
with distinct endpoints and label ±1.

Definition 2.2. A slide move between GBS trees takes one of the following two
forms:
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An induction move between GBS trees is as follows:
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Both directions of the move are considered induction moves. This move decomposes
into an elementary deformation as follows:
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Definition 2.3. Next we discuss A ±1–moves, defined in [4]. An A −1–move is an
induction followed by a collapse, with the following description. It is required that
k, ` 6= ±1, and that the left hand vertex has no other edges incident to it.
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The induction move changes the label ` to 1, after which the edge is collapsed.
Note that before the move, the loop is a strict ascending loop, and after, the loop

is not ascending. Thus an A −1–move removes an ascending loop, and its reverse,
called an A –move, adds one.

Remark 2.4. A ±1–moves preserve the property of being reduced. The same is not
always true of slide or induction moves, unless one is in a non-ascending deformation
space. Also, an induction or A ±1–move can only occur in an ascending deformation
space.
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We will make extensive use of the following result, which is the main theorem of
[4], and its corollary.

Theorem 2.5. In a deformation space of cocompact G–trees, any two reduced trees
are related by a finite sequence of slides, inductions, and A ±1–moves, with all inter-
mediate trees reduced.

Corollary 2.6. In a non-ascending deformation space of cocompact G–trees, any
two reduced trees are related by a finite sequence of slide moves, with all intermediate
trees reduced. Moreover, if e is an edge of T and a deformation from T to T ′ never
collapses e, then there is a sequence of slide moves from T to T ′ in which no edge
slides over e.

The first statement of the corollary follows immediately from the theorem, and has
previously appeared as [7, Theorem 7.4] and [9, Theorem 7.2]. The second statement
is proved in [4].

2.3. The modular homomorphism. Let G be a GBS group with labeled graph
(Γ, λ). There are two versions of the modular homomorphism G → Q×, each with
several descriptions [1, 7, 11]. In this paper, it turns out to be more convenient to
use the reciprocal of the usual definition, so we will include this modification here.
This makes it easier to keep track of slide moves; see for example Remark 3.3. We
will mostly work with the signed modular homomorphism q : G → Q×, defined as the
composition G → H1(Γ) → Q× where the second map is given by

(1) (e1, . . . , ek) 7→

k∏

i=1

λ(ēi)

λ(ei)
.

(The first map is given by first killing the normal closure of the elliptic elements to
obtain π1(Γ), and then abelianizing.) Equivalently, fix a non-trivial elliptic element
a ∈ G. Then every g ∈ G satisfies a relation garg−1 = as in G for some non-zero
integers r and s, and the assignment q(g) = s/r is a well defined homomorphism,
which agrees with the definition just given [11, 14].

The unsigned modular homomorphism is simply |q|, defined on H1(Γ) by

(e1, . . . , ek) 7→
k∏

i=1

|λ(ēi)|

|λ(ei)|
.

An equivalent definition is to choose any subgroup V of G commensurable with a
vertex group, and assign to each g ∈ G the positive rational number

[V g : V ∩ V g] / [V : V ∩ V g].

See [7] for a proof that this function agrees with |q(g)|. We say that (Γ, λ) is unimod-
ular if |q| is trivial.
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Finally, there is also an orientation homomorphism G → {±1} defined by g 7→
q(g)/ |q(g)|. This homomorphism is also defined on H1(Γ). The next result shows
that the GBS group associated to a labeled graph is determined by the orientation
homomorphism and the absolute value of the labeling. Hence it often suffices to
consider positive labeled graphs, i.e. labeled graphs (Γ, λ) such that λ(e) > 0 for all
e ∈ E(Γ).

Lemma 2.7. Let λ and λ′ be labelings on a graph Γ such that |λ| = |λ′|. If their
orientation homomorphisms agree then (Γ, λ) and (Γ, λ′) differ by admissible sign
changes. In particular, the corresponding GBS groups are isomorphic.

Proof. Let Ω: H1(Γ) → {±1} be the orientation homomorphism of (Γ, λ) and (Γ, λ′).
Fix a maximal tree T ⊆ Γ. Then every edge e of Γ − T determines a generator
[e] ∈ H1(Γ).

By admissible sign changes, we can arrange that λ and λ′ agree, and are positive,
on the edges of T . Then for any edge e in Γ − T we have that Ω([e]) = 1 if and only
if λ(e) and λ(ē) have the same sign, if and only if λ′(e) and λ′(ē) have the same sign.
Thus λ and λ′ can be made to agree on e and ē by an admissible sign change affecting
e, ē only. In this way, λ and λ′ can be made to agree on all of Γ. �

3. Labeled graph spaces

From now on we consider only GBS groups and their canonical deformation spaces.
Hence we will always refer to G instead of this deformation space.

Definition 3.1. For a GBS group G, we denote by RLG(G) the set of reduced la-
beled graphs representing G. Let RLG

+(G) be the set of positive reduced labeled
graphs representing G. Note that this latter set is non-empty only if the orientation
homomorphism is trivial.

Our goal in this section is to establish a criterion, which can be checked in terms
of any labeled graph in RLG(G), that characterizes when RLG(G) is finite. Notice
that if G is ascending and G 6= BS(1, n), then |RLG(G)| = ∞. If G = BS(1, n)
or G = Z, then RLG(G) consists of a single point (unless G = BS(1,−1), in which
case |RLG(G)| = 2). Therefore, we are mainly concerned with determining when a
non-ascending GBS group satisfies |RLG(G)| = ∞. However, we will need to prove
a more general statement, as we do not have an algorithm to determine whether a
given GBS group is ascending.

3.1. Monotone cycles and mobile edges. If (e0, . . . , en) is an edge path in Γ, we
define q(e0, . . . , en) by formula (1). This is also denoted qΓ(e0, . . . , en).

Definition 3.2. Let Γ be a labeled graph for G and e ∈ E(Γ). An edge path
(e0, . . . , en) is an e–edge path if:

1. ei 6= e, ē for i = 0, . . . , n;
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2. o(e) = o(e0); and

3. λ(ei) divides λ(e)q(e0, . . . , ei−1) for i = 0, . . . , n.

An e–edge path is an e–integer cycle if, in addition we have:

4. o(e0) = t(en); and

5. q(e0, . . . , en) ∈ Z.

If |q(e0, . . . , en)| 6= 1 we say that the e–edge path or the e–integer cycle is strict.

Remark 3.3. The first three conditions are necessary and sufficient to be able to
slide e along (e0, . . . , en). The resulting label on the edge e is λ(e)q(e0, . . . , en). Hence
e may slide repeatedly along an e–integer cycle. Also notice that any path obtained
by tightening an e–edge path (respectively, e–integer cycle) is an e–edge path (re-
spectively, e–integer cycle).

Definition 3.4. An edge path (e0, . . . , en, e) is a monotone cycle if (e0, . . . , en) is an
ē–edge path and q(e0, . . . , en, e) ∈ Z. An edge e is a monotone cycle if e is a loop and
q(e) ∈ Z. A monotone cycle is strict if the modulus is not equal to ±1.

Remark 3.5. Suppose (e0, . . . , en, e) is a monotone cycle. Since (e0, . . . , en) is an
ē–edge path, o(e0) = o(ē) = t(e). Hence a monotone cycle is a cycle. Further, since
ē /∈ (e0, . . . , en, e), it is a nontrivial cycle. Notice that in the definition of monotone
cycle, the final edge is distinguished. In particular, a cyclic reordering of the edges in
a monotone cycle may not be a monotone cycle.

Lemma 3.6. If Γ has a strict monotone cycle, then G is ascending. Further, if Γ
has a strict monotone cycle, then Γ has an immersed strict monotone cycle.

Proof. If Γ contains a strict monotone cycle which is a single edge e, then either e
is a strict ascending or strict virtual ascending loop. Therefore, after an A –move in
the second case, we see that G is ascending. Otherwise, suppose (e0, . . . , en, e) is a
strict monotone cycle in Γ. Then we can slide ē along (e0, . . . , en), turning e into a
loop. After the slide move, the modulus of the loop is a nontrivial integer, hence e is
either a strict ascending or strict virtual ascending loop. As before, this shows that
G is ascending.

For the second statement in the lemma, we must show that after tightening, a
monotone cycle is still a monotone cycle. This is clear since if (e0, . . . , en, e) is a
monotone cycle, then ei 6= e, ē. Therefore, after tightening, the edge e remains in the
cycle and the only tightening occurs in the edge path (e0, . . . , en), which remains an
ē–edge path after tightening. �

Example 3.7. The converse to the first statement of Lemma 3.6 does not hold in
general, though we shall prove it in a special case in Proposition 4.2. A counterex-
ample is given by the labeled graphs in Figure 1. The labeled graphs in this figure
represent the same GBS group; the labeled graph on the right is obtained by sliding
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e3 over ē. The labeled graph on the left contains a strict monotone cycle, namely the
cycle (e1, e2, e3, e). After sliding ē over (e1, e2, e3), e is a virtual ascending loop with
labels λ(e) = 6, λ(ē) = 132.

PSfrag replacements
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6 6 66 60

60

60 1212

55 1515 22

22 slide

e

e1

e2

e3

Figure 1. Sliding e3 over ē results in a graph with no strict monotone cycles.

We claim that the labeled graph on the right does not have any strict monotone
cycles. First, notice that none of the edges e1, ē1, e2, ē2 can slide. Also, since e is
separating (a fact that remains true after sliding e or ē), no strict monotone cycle
can end with e or ē. Finally, notice that ē3 cannot slide. Hence, if there is a strict
monotone cycle, it must be of the form (α, ē3), where α is an e3–edge path. In
particular, λ(e3)q(α) must be divisible by λ(ē3) = 22. However, the only place the
prime number 11 appears in the labeled graph is in the label λ(ē3), and since ē3 /∈ α,
λ(e3)q(α) is not divisible by 11 for any e3–edge path α. Therefore, the labeled graph
on the right cannot contain a strict monotone cycle.

Remark 3.8. In general, finding a monotone cycle requires a solution to the conju-
gacy problem for GBS groups (see Lemma 3.14). This problem is not yet known to
be solvable.

Definition 3.9. Given Γ ∈ RLG(G) and e ∈ E(Γ), we denote by S(Γ, e) ⊆ RLG(G)
the set of reduced labeled graphs obtained from Γ by a sequence of slides of e and ē.
S(Γ, e) is then called the slide space of e (based at Γ).

Proposition 3.10. Let Γ ∈ RLG(G) and e ∈ E(Γ). Then |S(Γ, e)| = ∞ if and only
if Γ contains a strict e–integer cycle or a strict ē–integer cycle.

Proof. By Remark 3.3, it is clear that if Γ contains a strict e–integer cycle or a strict
ē–integer cycle, then |S(Γ, e)| = ∞.

For the converse let Γi be an infinite sequence of labeled graphs in S(Γ, e). As
the number of edges in the graphs Γi is constant, there is a subsequence such that
Γi = Γ′ (as unlabeled graphs) for some fixed graph Γ′. Thus either |λi(e)| or |λi(ē)| is
an unbounded sequence of natural numbers. By interchanging e for ē and passing to
a subsequence if necessary, we can assume that |λi(e)| is a strictly increasing sequence
of natural numbers. Since slides of e commute with slides of ē, we can assume that
the labeled graphs Γi are obtained from each other without sliding ē. There is a finite
number of primes appearing in the sequence {|λi(e)|}. Indeed, this list is contained in
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the set of primes that appear on any labeled graph for G. Therefore, by the following
lemma, there are n, n′ such that λn(e) divides λn′(e). Let γ be the e–edge path that
e slid along transforming Γ into Γn and γ′ the strict e–integer cycle that e slid along
transforming Γn into Γn′. Then clearly γγ′γ̄ is a strict e–integer cycle in Γ. �

Lemma 3.11. Let {mi} be a strictly increasing sequence of natural numbers such
that only finitely many primes appear in the sequence. Then there are distinct indices
n, n′ such that mn divides mn′ .

Proof. We will prove this by induction on the number of primes appearing in the
sequence {mi}. If there is only one prime appearing, then the lemma is obvious.

Suppose that N primes appear in the sequence {mi}. To any element m in the
sequence we associate a point in ZN

>0 (i.e., the first orthant of ZN ) by:

N∏

j=1

p
kj

j 7→ (k1, . . . , kN)

where
∏N

j=1 p
kj

j is the prime decomposition of m. For any element mi in the sequence,

we denote the jth coordinate in this assignment by (mi)j. If there is some element
mi such that (m1)j 6 (mi)j for all j, then m1 divides mi and the conclusion of the
lemma holds.

Otherwise, by passing to a subsequence, we can assume that (mi)j < (m1)j for some
fixed j and all i. By further passing to a subsequence we can assume that (mi)j = M
for all i. Then {mi/p

M
j } is a strictly increasing sequence of natural numbers in which

only N − 1 primes appear. Now apply induction to complete the proof. �

Definition 3.12. Let Γ ∈ RLG(G). An edge e ∈ E(Γ) is mobile if either:

1. there is a strict monotone cycle of the form (e0, . . . , en, e) or (e0, . . . , en, ē); or

2. |S(Γ, e)| = ∞ (equivalently, by Proposition 3.10, Γ contains a strict e–integer
cycle or a strict ē–integer cycle).

An edge that is not mobile is called non-mobile. Note that mobility is a property of
geometric edges: e is mobile if and only ē is.

Remark 3.13. By Proposition 3.10 there is an algorithm to determine whether a
given edge e ∈ E(Γ) is mobile or not. Indeed, given an edge we can start making an
exhaustive search of S(Γ, e). Either this space is finite or we find an strict e–integer
cycle or strict ē–integer cycle. In the latter case, e is mobile. If the slide space is
finite, we can search these graphs to see if e is a strict ascending or strict virtual
ascending loop in any of the graphs. An affirmative answer implies that e is mobile,
a negative answer implies that e is non-mobile.

Let T denote the Bass–Serre tree covering Γ.
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Lemma 3.14. An edge e ∈ E(Γ) is mobile if and only if Gt
ẽ ( Gẽ for some t ∈ G

and some lift ẽ ∈ E(T ) of e.

Proof. It is clear that if e or ē is the last edge of a strict monotone cycle, or there
is strict e–integer cycle or strict ē–integer cycle then there is a lift ẽ and a t ∈ G
satisfying the conclusion of the lemma.

For the converse, given t and ẽ with Gt
ẽ ( Gẽ, we can replace t if needed to arrange

that there are no G–translates of ẽ along the edge path connecting ẽ to tẽ. Also we
can assume without loss of generality that o(ẽ) separates ẽ from tẽ. Let α̃ be the
path in T from ẽ to tẽ, and let α be its image in Γ.

If ẽ and tẽ are coherently oriented, then (α, ē) is a strict monotone cycle. Otherwise,
α is a strict e–integer cycle. �

Corollary 3.15. If Γ, Γ′ ∈ RLG(G) are related by slide moves and e ∈ E(Γ) is mobile,
then e is mobile in Γ′.

Proof. This follows from Lemma 3.14 since edge stabilizers are unchanged by slide
moves. �

Example 3.7 shows that both parts of the definition for mobility are needed. The
edge e is part of a strict monotone cycle (e1, e2, e3, e) in the labeled graph on the left
and hence is mobile. In the labeled graph on the right, as noted in the example, there
are no strict monotone cycles, but there is a strict ē–integer cycle, so e is mobile.

Remark 3.16. The set of non-mobile edges is preserved by slides, inductions, and
A ±1–moves. To make sense of the third case, observe that even though an A ±1–
move changes the set of edges, the edges directly involved in the move are all mobile,
so each non-mobile edge is present before and after the move, and its status does
not change (by Lemma 3.14). In the case of an induction move, the loop is mobile
before and after, and mobility of other edges is not affected, again by Lemma 3.14.
Therefore, for any labeled graph space, we can compare non-mobile edges between
any two labeled graphs.

Lemma 3.17. In a labeled graph, a non-mobile edge cannot slide over a mobile edge.

Proof. Suppose an edge f slides over a mobile edge e. Then there are lifts f̃ and ẽ
in the covering tree T such that f̃ slides over ẽ, and so Gf̃ ⊆ Gẽ. Let n = [Gẽ : Gf̃ ].

By Lemma 3.14 there is a t ∈ G such that Gt
ẽ ( Gẽ. Let m = [Gẽ : Gt

ẽ]. Then
Gt

f̃
⊆ Gt

ẽ ( Gẽ, and Gt

f̃
is the unique subgroup of Gẽ of index mn. This implies that

Gt

f̃
is the subgroup of Gf̃ of index m, which is greater than 1, and so f is mobile. �

3.2. Slide relations. In this subsection we will work out some methods to rearrange
sequences of slide moves. In particular, we will show that any sequence of slides
can be rewritten so that non-mobile edges slide before mobile edges, and individual
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non-mobile edges can be slid one at a time. To simplify the discussion, we will only
consider positive labeled graphs. All slides in this section are between reduced trees
(that is, the slides take place “in RLG

+(G)”).

Notation 3.18. If Γ ∈ RLG(G), e ∈ E(Γ) and A is an e–edge path, we will use the
notation e/A to denote the slide move of e over A. When we write a composition of
slides e/A · f/B we will always assume that f/B is a valid slide move after sliding e
over A. We have some obvious relations: e/A · e/A′ = e/AA′ and e/Ā is the inverse
of e/A (here Ā is the reverse of the path A).

Throughout the rest of the section, A denotes an e or ē–edge path and B denotes
an f or f̄–edge path. Likewise for A′, B′, etc. We will use α to denote an e or ē–edge
path not containing f or f̄ , and β an f or f̄–edge path not containing e or ē.

The following proposition is our current goal.

Proposition 3.19. Suppose Γ ∈ RLG
+(G) and e, f ∈ E(Γ) (e 6= f, f̄) where f is

non-mobile. Suppose e/A · f/B is valid slide sequence in RLG
+(G). Then:

e/A · f/B = f/B ′ · f̄/B′′ · e/A′ · ē/A′′

for some appropriate edge paths B ′, B′′, A′ and A′′.

We will establish this proposition by a careful analysis of how to commute individual
slide moves past one another. We begin by listing several basic relations.

Definition 3.20. In some of the slide relations below, renaming occurs. This does
not mean that the edges themselves are renamed. Rather, when the relation is used to
substitute some slide moves for others inside a larger sequence of moves, the moves in
the larger sequence occurring after the newly substituted moves need to be renamed,
so that they still refer to the same edges as before. For example, the instruction
“rename e 7→ f , f 7→ ē ” means that moves such as e/α, f/ē, e/f̄ occurring later
in the sequence should now be written as f/α, ē/f̄ , f/e. The reason for this should
become clear in the proof of the next lemma.

Lemma 3.21. Suppose that f is non-mobile. Then the following relations are valid:

(a) e/α · f/β = f/β · e/α

(b) e/α · f/e = f/ᾱe · e/α

(c) e/α · f/ē = f/ēα · e/α

(d) e/f · f/β = f/β · e/βf

(e) e/f · f/e = f/e

(f) e/f · f/ē = e/f · ē/f, then rename e 7→ f̄ , f 7→ ē

(g) e/f̄ · f/β = f/β · e/f̄ β̄

(h) e/f̄ · f/e = f̄ /e, then rename e 7→ f, f 7→ ē

(i) e/f̄ · f/ē = e/f̄
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where f, f̄ /∈ α and e, ē /∈ β. Furthermore, after substituting and renaming moves, f
still refers to a non-mobile edge.

Proof. In the diagrams below, the heavy edge is f and the light edge is e. Note that
in cases (f) and (h), later references to these edges will be renamed. Since f slides
over e or ē in these cases, e must be non-mobile by Lemma 3.17. So it remains true
that f is non-mobile in later moves, after the renaming step.

Now consider the individual cases, recalling that α and β do not contain e, ē, f , or
f̄ . Case (a) is obvious. Case (b) is clear after noting that o(e) = o(α) and t(α) = o(f).
In case (c) we have o(α) = o(e) and t(e) = o(f) and the relation is clear. In case (d)
we have o(e) = o(f) = o(β) and the relation is clear.

For (e), shown below, f is a loop at o(e). The labels λ(e), λ(f) are of the form
ca, a since e slides over f . Then, since f slides over e, we must have cb | a (where
b = λ(f̄)), hence b | a. Since f is non-mobile, we then have b = a. Hence the first
slide may simply be omitted.

PSfrag replacements

ca

a a

b

b b

cb

cb

For (f), shown below, e is a loop at o(f) and we have λ(e), λ(f) of the form ca, a
as before. Since f slides over ē, we have b | a (where b = λ(ē)) and the new label of
f becomes acd/b (where d = λ(f̄)). This integer is divisible by d, and so f is now
virtually ascending. Since f is non-mobile, we conclude that acd/b = d, so ac = b.
Since b | a, we now have c = 1 and a = b. The result of the two moves can now be
achieved by sliding e and ē over f . After this move, f̄ is in the position previously
occupied by e, so later references to e should be renamed as f̄ . Similarly, references
to f should be renamed to ē (e would work equally well in this case).PSfrag replacements

ca

aa

bb

b

d d

d d

cb

cd

cd

In case (g) we have o(e) = t(f) and o(f) = o(β) and the relation is clear. For (h) we
have o(e) = t(f), and λ(e), λ(f̄) of the form ba, a. After the first slide λ(e) becomes
bc where c = λ(f), and since the second slide occurs we have that bc | c. Hence b = 1
and we originally have λ(e) = λ(f̄). Now the same labeled graph results by sliding
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f̄ over e. In later moves, e should be renamed as f , and f as ē, since f and ē now
occupy the previous positions of e and f .

Case (i) is shown below:
PSfrag replacements

ca

a

a a

b

bb

d

d

cb

The labels λ(e), λ(f̄) are of the form ca, a and λ(e) becomes cb after the first slide
(where b = λ(f)). From the second slide we deduce that d = λ(ē) divides b. Now e is
virtually ascending, and it is non-mobile since f can slide over it. So cb = d and the
second slide may be omitted. �

The next result is a straightforward application of the relations (a)–(d) of Lemma
3.21. It will be used to establish a special case of Proposition 3.19, when either
f, f̄ /∈ A or e, ē /∈ B.

Lemma 3.22. Suppose that f is non-mobile. Then the following relations are valid:

(a) e/αfα′ · f/β = f/β · e/αβfα′

(b) e/αf̄α′ · f/β = f/β · e/αf̄ β̄α′

(c) e/α · f/βeβ ′ = f/βᾱeβ ′ · e/α

(d) e/α · f/βēβ ′ = f/βēαβ ′ · e/α

Proof. For (a) we write

e/αfα′ · f/β = e/αf · f/β · e/α′
By 3.21(a):

= e/α · f/β · e/βfα′
3.21(d):

= f/β · e/αβfα′.3.21(a):

The other relations are similar. �

The next relations will form the basis of the proof of Proposition 3.19.

Lemma 3.23. Suppose that f is non-mobile. Then the following relations are valid:

(a) e/αfα′ · f/βeβ ′ = f/ᾱeβ ′ · e/αβ

(b) e/αfα′ · f/βēβ ′ = f/β · f̄ /α′ · e/αβfᾱ′ · ē/fβ ′, rename e 7→ f̄ , f 7→ ē

(c) e/αf̄α′ · f/βēβ ′ = f/α′β ′ · e/αf̄ β̄ ′

(d) e/αf̄α′ · f/βeβ ′ = f/α′ · f̄ /ᾱe · e/α · ē/β ′, rename e 7→ f, f 7→ ē



GENERALIZED BAUMSLAG-SOLITAR GROUPS 15

Proof. The first three of these follow from straightforward computations, similar to
Lemma 3.22.

e/αfα′ · f/βeβ ′ = e/α · f/β · e/βf · f/ᾱ′e · e/α′ · f/β ′
By 3.21(a,d,b):

= f/β · e/αβ · f/ᾱ′ · e/ᾱ′f · f/eβ ′ · e/α′
3.21(a,d):

= f/βᾱ′ · e/αβ · f/α′e · e/ᾱ′ · f/β ′ · e/α′
3.21(a,e,b):

= f/β · e/αβ · f/eβ ′
3.21(a) and cancellation:

= f/ᾱeβ ′ · e/αβ.3.21(b,a):

This proves (a). For (b) we have:

e/αfα′ · f/βēβ ′ = e/αf · f/β · e/α′ · f/ēβ ′

= f/β · e/αβf · f/ēα′β ′ · e/α′
3.21(d,c,a):

= f/β · e/αβf · ē/f · ē/α′β ′ · f̄ /α′, rename e 7→ f̄ , f 7→ ē3.21(f):

= f/β · e/αβf · ē/f · f̄ /α′ · ē/α′β ′, rename e 7→ f̄ , f 7→ ē3.21(a):

= f/β · e/αβf · f̄/α′ · ē/fβ ′, rename e 7→ f̄ , f 7→ ē3.21(g) and cancellation:

= f/β · f̄/α′ · e/αβfᾱ′ · ē/fβ ′, rename e 7→ f̄ , f 7→ ē.3.21(g,a):

Note that part of the third line has undergone renaming. The renaming instruction
is still needed for any subsequent moves. Next consider (c):

e/αf̄α′ · f/βēβ ′ = e/αf̄ · f/β · e/α′ · f/ēβ ′

= f/β · e/αf̄ β̄α′ · f/ēβ ′
3.21(g,a):

= f/β · e/αf̄ β̄ · f/ēα′β ′ · e/α′
3.21(c,a):

= f/β · e/αf̄ · f/ēβ̄α′β ′ · e/β̄α′
3.21(c,a):

= f/β · e/α · f/β̄ · e/f̄β · f/α′β ′ · e/β̄α′
3.21(i,g):

= e/αf̄ · f/α′β ′ · e/α3.21(a) and cancellation:

= f/α′β ′ · e/αf̄ β̄ ′.3.21(g,a) and cancellation:

Finally we prove (d). Notice that as αf̄α′ is an e–edge path o(α′) = o(f) and after
sliding e we have that o(e) = t(α′). Also, since βeβ ′ is an f–edge path after sliding
e, o(β) = o(f) = o(α′) and t(β) = o(e) = t(α′) Therefore, as neither α′ nor β contain
e, ē, βᾱ′ is a cycle before sliding e. Since after sliding e over αf̄α′ we can slide f over
βe we have that λΓ(e)qΓ(α, f̄ , α′) divides λΓ(f)qΓ(β). (Here Γ is the labeled graph
just before the slide moves under discussion.) In particular, after sliding f along
β, we can slide it back along ᾱ′. Finally, since λΓ(f) divides λΓ(e)qΓ(α, f̄) which
divides λΓ(f)qΓ(βᾱ′), we have that qΓ(βᾱ′) is an integer. As f is non-mobile, this
integer must be 1 (recall that we are assuming that all labels are positive). Hence



16 MATT CLAY AND MAX FORESTER

f/β = f/α′. Now it is easy to verify that (d) is a valid relation:

e/αf̄α′ · f/α′eβ ′ = e/αf̄ · f/α′ · e/α′ · f/eβ ′

= f/α′ · e/αf̄ · f/eβ ′
3.21(g,a) and cancellation:

= f/α′ · e/α · f̄ /e · ē/β ′, rename e 7→ f, f 7→ ē3.21(h):

= f/α′ · f̄ /ᾱe · e/α · ē/β ′, rename e 7→ f, f 7→ ē.3.21(b):

This completes the proof. �

We are now in a position to prove Proposition 3.19.

Proof of Proposition 3.19. To simplify the discussion we introduce a shorthand for
slide sequences. Slides of the form e/α or ē/α are denoted by E, and those of the
form e/αfα′, e/αf̄α′, ē/αfα′ or ē/αf̄α′ by EF . Likewise define the symbols F and
FE. Given a slide sequence, let m denote the number of slides of the form EF or FE.
Let n denote the number of transitions of the form EF FE after omitting the symbols
E, F . The complexity of the sequence is the pair (m, n), ordered lexicographically.

We are given the sequence e/A · f/B, which decomposes into a slide sequence
consisting of E’s and EF ’s, followed by F ’s and FE’s. Our strategy is to apply slide
relations to reduce complexity, until n = 0. If n = 0 then we have a sequence in which
no EF appears before an FE. To complete the argument in this case, Lemma 3.21(a)
will transform any EF to FE; Lemma 3.22(a,b) transforms any EF F to FEF ; and
Lemma 3.22(c,d) transforms any EFE to FEE. Using these relations, the sequence
can be transformed to one consisting of F ’s and FE’s followed by E’s and EF ’s. Lastly,
since slides of e and ē (respectively, f and f̄) commute, the sequence can be put into
the desired form f/B ′ · f̄ /B′′ · e/A′ · ē/A′′.

Next we show how to reduce complexity if n > 0. We will be applying the relations
of Lemma 3.23, some of which involve renaming. When this occurs, the symbols
EF and FE, and the symbols E and F , will be exchanged throughout part of the
sequence. Notice that this in itself does not change m. Notice also that the relations
in 3.23(a), 3.23(c) and 3.23(d) all reduce m.

There is one additional rewriting move which has not yet been discussed. The
moves EEF may be rewritten either as EF or as EF E, depending on whether the
edge e appears with the same orientation in the two moves. Similarly, FEF can be
rewritten as FE or FFE.

The procedure is first to push all F ’s to the beginning of the sequence and all E’s
to the end, using this last observation and Lemmas 3.21(a) and 3.22. This does not
change complexity. Then apply relation 3.23(a), 3.23(c) or 3.23(d), if possible, to one
of the EF FE pairs, to reduce complexity. If none of these apply, then every EF FE pair
matches the left hand side of relation 3.23(b). Using this relation does not obviously
reduce complexity, but we can proceed as follows.
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Starting with the rightmost EF FE pair, the slide sequence has the form

· · · (EF FE)(FE)∗(EF )∗(E)∗

where ∗ denotes zero or more copies of the symbol. Applying 3.23(b) to this pair, the
sequence becomes

· · · (FFEFEF )(EF )∗(FE)∗(F )∗,

with no change to the symbols that are not shown. If the (EF )∗ term in the original
sequence is empty then n decreases and m stays the same, and complexity has been
reduced. Otherwise the new sequence has the same complexity. If this occurs, apply
Lemma 3.23 to the newly created rightmost EF FE pair. If case (a), (c) or (d) applies,
complexity is reduced as before. If case (b) applies then we are in the situation just
discussed, with empty (EF )∗ term, and n decreases. Thus, in all cases, complexity
has been reduced. �

The corollary below follows directly, by repeated application of Proposition 3.19.

Corollary 3.24. Suppose Γ, Γ′ are related by a sequence of slides in RLG
+(G) and

f ∈ E(Γ) is non-mobile. Then there is a labeled graph Γf ∈ S(Γ, f) and a sequence of
slides Γf → Γ′ in RLG

+(G) during which the edges f, f̄ remain stationary. Moreover,
if a geometric edge e, ē ∈ E(Γ) was stationary in the original slide sequence, then the
sequence Γf → Γ′ may be chosen to leave e, ē stationary as well.

3.3. Finiteness of RLG(G). We can now prove Theorem 1.1, along with some ap-
plications. Here is a restatement of the theorem.

Theorem 3.25. Let Γ ∈ RLG(G), where G 6= BS(1, n). Then |RLG(G)| = ∞ if and
only if Γ has a mobile edge.

Proof. Let G+ be the GBS group represented by the labeled graph (Γ, |λ|). Changing
the signs of a labeling has no effect on divisibility relations, and hence has no effect
on slide moves or mobility of edges. Moreover, the absolute value map RLG(G) →
RLG

+(G+) is finite-to-one, so |RLG(G)| is finite if and only if |RLG
+(G+)| is. Thus,

without loss of generality, we may assume that Γ is a positive labeled graph, and we
may work in RLG

+(G), where Corollary 3.24 is valid.
Suppose Γ has a mobile edge e. If there is a strict monotone cycle then G is ascend-

ing, and since G 6= BS(1, n), it follows that |RLG(G)| = ∞. Otherwise |S(Γ, e)| = ∞,
which implies that |RLG(G)| = ∞.

Next suppose that Γ has no mobile edges. In particular, G is non-ascending. By
Corollary 2.6, RLG

+(G) is connected by slide moves. Let e1, e2, . . . , ek be the geometric
edges of Γ. Given any Γ′ ∈ RLG

+(G), Corollary 3.24 implies that there is a sequence
of labeled graphs Γ = Γ0, Γ1, . . . , Γk = Γ′ such that Γi is in the slide space S(Γi−1, ei)
for each i. Since no Γi has a mobile edge, these slide spaces are all finite, and therefore
RLG

+(G) is finite. �
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Remark 3.26. Since we have an algorithm to determine whether a given labeled
graph has a mobile edge (Remark 3.13), the finiteness criterion above can be checked
algorithmically.

Example 3.27. Figure 2 shows a labeled graph with modulus a nontrivial integer.
For this reason, the finiteness theorem of [7] does not apply. There is only one possible
slide move, and the only slide afterwards is its reverse. It follows that there are no
mobile edges, by Remark 3.13. Hence this GBS group has only finitely many reduced
labeled graphs representing it.
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Figure 2. A GBS group with finite labeled graph space and integral modulus.

As a consequence of Theorem 1.1, we have the following theorem about the finite-
ness properties of the group of outer automorphisms of a GBS group. The proof is
exactly as in [3, Theorem 75] or [14, Theorem 1.5]. Recall that a group is of type F∞

if it is the fundamental group of an aspherical cell complex having finitely many cells
in each dimension.

Theorem 3.28. If a GBS group G is represented by a labeled graph that does not
have any mobile edges, then Out(G) is of type F∞.

Another application concerns the isomorphism problem for GBS groups.

Theorem 3.29. There is an algorithm which, given two labeled graphs, one of which
does not have any mobile edges, determines whether the corresponding GBS groups
are isomorphic.

Proof. Let Γ, Γ′ be reduced labeled graphs with corresponding GBS groups G, G′,
where Γ has no mobile edges. Remark 3.16 implies that the deformation space of Γ is
non-ascending. Hence, by Corollary 2.6, reduced trees in this deformation space are
connected by slide moves (between reduced trees). Since RLG(G) is finite (Theorem
1.1), it can be enumerated effectively, by performing all possible slide sequences,
exactly as in the proof of [7, Corollary 8.3]. Then G and G′ are isomorphic if and
only if the labeled graph Γ′ is found. �

4. Betti number one graphs

Given a non-elementary GBS group G, all labeled graphs Γ ∈ RLG(G) have the
same first Betti number b(Γ), since this is simply the rank of the quotient of G by the
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subgroup generated by the elliptic elements. Alternatively, collapse and expansion
moves induce homotopy equivalences of the underlying graph. Thus we also denote
this number b(G). In this section we will only consider GBS groups G such that
b(G) = 1. As before, all GBS groups in this section are assumed to be non-elementary.

Remark 4.1. Suppose Γ ∈ RLG(G) with b(Γ) = 1. If there is a strict monotone
cycle in Γ, then there is one which is embedded. To see this, note first that there is
one which is immersed (by Lemma 3.6). Since b(Γ) = 1, the cycle is a covering of an
embedded cycle. Then since the final edge in a monotone cycle appears only once,
the cycle itself must be embedded.

Hence, we can determine algorithmically whether a given labeled graph Γ with
b(Γ) = 1 contains a strict monotone cycle.

Proposition 4.2. Suppose Γ ∈ RLG(G) and b(Γ) = 1. If Γ has a strict monotone
cycle and Γ′ ∈ RLG(G) then Γ′ also has a strict monotone cycle.

Proof. By Theorem 2.5 we only need to consider the case when Γ and Γ′ are related
by a slide, induction or A ±1–move. If Γ and Γ′ are related by an induction move, then
both contain strict ascending loops and hence both contain strict monotone cycles.
Also, if Γ and Γ′ are related by an A ±1–move, then one of the labeled graphs contains
a strict ascending loop and the other contains a strict virtual ascending loop, hence
both contain a strict monotone cycle.

Now assume that Γ has an embedded strict monotone cycle (e0, . . . , en, e) and that
Γ′ is obtained by sliding an edge f over an edge f ′ in Γ. Since we can assume that the
strict monotone cycle is embedded, ei 6= ej, ēj for any i 6= j. We have several cases to
consider depending on the configuration of f, f ′ with respect to the monotone cycle.
In all cases, it suffices to find an edge that can be slid into a loop, since it will have
the same (integral) modulus as (e0, . . . , en, e) (because b(Γ) = 1).

Clearly if f, f̄ /∈ (e0, . . . , en, e), then this strict monotone cycle is also a strict
monotone cycle in Γ′.

If f = ei and f ′ 6= ē, then (e0, . . . , ei−1, f
′, ei, . . . , en, e) is a strict monotone cycle

in Γ′. Likewise, if f = ēi and f ′ 6= e then (e0, . . . , ei, f̄
′, ei+1, . . . , en, e) is a strict

monotone cycle in Γ′.
Since the strict monotone cycle is embedded, the only possible configurations of

f, f ′ where f ∈ {ei, ēi} and f ′ ∈ {e, ē} are when f = e0 and f ′ = ē or f = ēn and
f ′ = e. In the first case (e1, . . . , en, e0) is a strict monotone cycle in Γ′. To see this
note that e0 can slide over ē and ē can slide over e0, and hence appropriately chosen
lifts to the Bass–Serre tree carry the same stabilizer. Then since ē can slide over the
path (e0, . . . , en), we have that ē0 can slide over (e1, . . . , en), after which it becomes
a virtual ascending loop. In the second case, with f = ēn and f ′ = e, the path
(e0, . . . , en) is a strict monotone cycle in Γ′ for similar reasons.

The other remaining cases of interest are when f ∈ {e, ē}. If f = e, then
(e0, . . . , en, f ′, e) is a strict monotone cycle in Γ′, by the following reasoning. For



20 MATT CLAY AND MAX FORESTER

any strict monotone cycle (e0, . . . , en, e) we have that λ(ē)q(e0, . . . , en) is an integer,
since this is the label on ē after sliding over (e0, . . . , en). Also, λ(e) divides this inte-
ger since the modulus of the cycle is (λ(ē)/λ(e))q(e0, . . . , en). In our situation λ(f)
divides λ(e), and hence also λ(ē)q(e0, . . . , en). So in Γ′ the edge ē can slide over
(e0, . . . , en) and then over f .

If f = ē, then (f̄ ′, e0, . . . , en, e) is a strict monotone cycle in Γ′, since ē can slide
back over f̄ ′ and then over (e0, . . . , en). �

In the case b(Γ) = 1, we now have a converse to the first statement of Lemma 3.6.

Corollary 4.3. If Γ ∈ RLG(G) satisfies b(Γ) = 1 then G is ascending if and only if
Γ has an embedded strict monotone cycle.

Proof. If G is ascending, then there is a labeled graph Γ′ ∈ RLG(G) that contains a
strict ascending loop (which is a strict monotone cycle). By Proposition 4.2, Γ also
contains a strict monotone cycle. The converse is given by Lemma 3.6. �

Remark 4.4. Note that the latter condition can be checked effectively by Remark 4.1.
Thus, when b(Γ) = 1, we can check algorithmically whether G is ascending. There is
no known condition for checking whether a GBS group is ascending in general.

Definition 4.5. A mobile edge that is not an ascending loop or the reverse of an
ascending loop is called an s–mobile edge (s stands for “slide”). Note that if b(Γ) = 1
and e is an ascending loop, then sliding e or ē over another edge always results in a
graph that is not reduced. Hence s–mobile edges are the only mobile edges that can
slide over another edge while staying inside RLG(G). Given Γ ∈ RLG(G), let s(Γ) be
number of geometric s–mobile edges. By the following lemma, this number may also
be denoted s(G).

Lemma 4.6. If Γ, Γ′ ∈ RLG(G) and b(Γ) = 1 then s(Γ) = s(Γ′).

Proof. As before, we just need to verify this when Γ and Γ′ are related by a slide,
induction or A ±1–move. For slide moves, the number of mobile edges is invariant (by
Corollary 3.15) and so is the number of ascending loops.

For the other moves, note that at least one of Γ or Γ′ must be a single strict
ascending loop with trees attached. The s–mobile edges are exactly those which
can be slid to and around the loop. The result can be verified easily from this
description. �

4.1. The non-mobile subgraph. Since we are assuming that b(Γ) = 1 for any
Γ ∈ RLG(G), the image q(G) ⊂ Q× is generated by a single rational number q = q(γ),
where γ is an (oriented) embedded cycle in Γ. We may assume that |q| > 1.

Let Γnon ⊂ Γ be the non-mobile subgraph, obtained from Γ by discarding the mobile
edges and any vertices incident to a strict ascending loop. Note that Γnon may be
disconnected, and may have isolated vertices. Let Γ1, . . . , Γk be the simply connected
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components of Γnon. There is at most one component of Γnon not in this list, and this
only happens when G is non-ascending.

In both of the examples of Figure 3, the non-mobile subgraph consists of the two
vertices of valence one; all edges are mobile, and the middle vertex is deleted.

Each Γi carries a subgroup Gi of G, well defined up to conjugacy. These subgroups
and their conjugates will be called non-mobile subgroups.

For each geometric mobile edge {e, ē}, one of its orientations will be designated as
preferred. If e ∈ γ then e is preferred. Otherwise, if e, ē 6∈ γ, we say e is preferred if
e separates o(e) from γ. Since b(Γ) = 1, exactly one of e, ē will have this property.

Lemma 4.7. For each simply connected component Γi ⊆ Γnon, there is a unique
preferred mobile edge ei such that o(ei) ∈ Γi. Furthermore, every s–mobile edge is ei

or ēi for some i. Hence Γnon has exactly s(G) simply connected components.

Proof. There are two cases depending on whether Γi intersects γ. If Γi intersects γ
(which can happen if γ contains an s-mobile edge), then since Γi is simply connected,
there is a (preferred) mobile edge ei ∈ γ such that o(ei) ∈ Γi. There is at most one
other geometric mobile edge in γ that is incident to Γi. Its preferred orientation must
meet Γi in its terminal vertex, since the edges in γ are oriented coherently. For any
other preferred mobile edge e′ incident to Γi, we have that Γi separates e′ from γ, and
so Γi contains t(e′), not o(e′).

If Γi does not intersect γ, then since b(Γ) = 1, there is a unique preferred mobile
edge incident to Γi, separating Γi from γ.

For the second statement, let e be a preferred s–mobile edge. Then o(e) is not the
vertex of an ascending loop, and so o(e) ∈ Γnon. If o(e) 6∈ γ then o(e) ∈ Γi for some
i. If o(e) ∈ γ then e ∈ γ, and hence all components of Γnon are simply connected.
Thus o(e) ∈ Γi for some i. In either case, since o(e) ∈ Γi, it follows that e = ei by
uniqueness. �

We will be looking carefully at the subgraphs Γi and how they sit inside Γ. For
this we need the following definitions.

Definition 4.8. A pointed labeled graph is a triple Γ̂ = (Γ, v̂, λ̂) where Γ is a labeled

graph, v̂ ∈ V (Γ), and λ̂ is a non-zero integer. It is reduced if Γ is reduced and

λ̂ 6= ±1. Let R̂LG(G) be the set of reduced pointed labeled graphs (Γ, v̂, λ̂) such that
Γ ∈ RLG(G).

We define an equivalence relation on R̂LG(G) via the following procedure. Given

(Γ, v̂, λ̂), adjoin a new distinguished edge e to Γ with o(e) = v̂ and label λ(e) = λ̂
(the label λ(ē) is irrelevant). Perform any elementary deformation of this graph in
which e is never collapsed. In particular, no edge slides over e. Now let v̂ ′ = o(e),

λ̂′ = λ(e), and delete e to obtain the labeled graph Γ′. If Γ′ is reduced and λ̂′ 6= ±1,

we declare the pointed labeled graphs (Γ, v̂, λ̂) and (Γ′, v̂′, λ̂′) to be equivalent.



22 MATT CLAY AND MAX FORESTER

As always, labeled graphs are considered modulo admissible sign changes, and this
applies to pointed labeled graphs as well. In particular, an admissible sign change
may be performed on the distinguished edge, and so (Γ, v̂, λ̂) is always equivalent to

(Γ, v̂,−λ̂). Alternatively, this equivalence can be seen by performing an admissible
sign change on every vertex and edge of Γ.

Given Γ̂ ∈ R̂LG(G) let R̂LG(Γ̂) ⊂ R̂LG(G) be the equivalence class containing Γ̂. It

is called the pointed labeled graph space of Γ̂.

Remark 4.9. It is interesting to compare R̂LG(Γ̂) with RLG(Γ). For example, let

Γ̂ = (Γ, v̂, λ̂) where Γ is the labeled graph of Figure 2, v̂ is the upper left vertex, and

λ̂ = 8. Then |R̂LG(Γ̂)| = ∞ even though |RLG(Γ)| < ∞, because the distinguished

edge can slide around the cycle in the counterclockwise direction, increasing λ̂. Indeed,
for any labeled graph Γ with a non-trivial integral modulus, there will be pointed

labeled graphs Γ̂ with |R̂LG(Γ̂)| = ∞, by similar reasoning. However, if Γ has no
non-trivial integral moduli, then we have the following result.

Proposition 4.10. Suppose G has no non-trivial integral moduli. Then

(a) |R̂LG(Γ̂)| < ∞ for every Γ̂ ∈ R̂LG(G), and

(b) there is an algorithm which, given Γ̂, Γ̂′ ∈ R̂LG(G), determines whether they are
in the same pointed labeled graph space.

Proof. Given Γ̂ = (Γ, v̂, λ̂) let Γ0 be the reduced labeled graph obtained from Γ by

adjoining a new edge e and a new vertex t(e), with o(e) = v̂, λ(e) = λ̂, and λ(ē) = 2.
Let G0 be the new GBS group. This operation does not change the image of the
modular homomorphism, so G0 has no non-trivial integral moduli. Now observe

that R̂LG(Γ̂) embeds into RLG(G0), by identifying the distinguished edge with e.
Conclusion (a) follows because RLG(G0) is finite, by [7, Theorem 8.2].

For (b) one considers elementary deformations of Γ0 in which e is never collapsed.
By Corollary 2.6, if Γ′

0 is related to Γ0 by such a deformation, then there is a sequence

of slide moves from Γ0 to Γ′

0 in which no edge ever slides over e. Now, given Γ̂ and

Γ̂′, start with Γ0 and perform all possible sequences of slide moves, never sliding an

edge over e. All labeled graphs thus obtained yield pointed labeled graphs in R̂LG(Γ̂)
(by recording o(e) and λ(e) and deleting e). Moreover every pointed labeled graph in

R̂LG(Γ̂) will be found, since these slides take place in RLG(G0), which is finite. �

Definition 4.11. Recall that given Γ ∈ RLG(G) with b(Γ) = 1, each simply connected
component Γi of Γnon has a preferred mobile edge ei associated to it, with o(ei) ∈ Γi.

Define Γ̂i to be the pointed labeled graph (Γi, o(ei), λ(ei)). This data will also be

denoted (Γi, v̂i, λ̂i). Note that Γ̂i is reduced, because Γ is, and so Γ̂i ∈ R̂LG(Gi) for
each i.
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Theorem 4.12. Suppose Γ, Γ′ ∈ RLG(G) and b(Γ) = 1. Then

(a) Γ and Γ′ define the same non-mobile subgroups of G, and

(b) for each non-mobile subgroup Gi, the corresponding pointed labeled graphs Γ̂i

and Γ̂′

i are equivalent in R̂LG(Gi).

Proof. We may assume that Γ and Γ′ are related by a slide, induction, or A –move.
First consider an induction move. Both labeled graphs have ascending loops, where

the move takes place, and note that every edge incident to an ascending loop is mobile.
Hence the non-mobile subgraphs and subgroups do not change, nor do the labels λ(ei)
(since o(ei) is not the vertex of the ascending loop).

Next suppose that Γ′ is obtained from Γ by an A –move, exactly as pictured in
Definition 2.3. The virtually ascending loop in Γ with labels (k, k`m) is ei for some i.

Then the vertex of the loop is v̂i and λ̂i = k. After the A –move, the newly created
edge with labels (k, `) becomes ei, and the subgraph Γi is unchanged. It is still the

case that λ̂i = k, and v̂i has not moved. All other subgraphs Γj are also unchanged.

Hence Gi = G′

i and Γ̂i = Γ̂′

i for all i.
Now suppose that Γ′ is obtained from Γ by sliding e over e′. To prove (a) it suffices

to show that the simply connected components of Γnon contain the same edges and
vertices before and after the slide move. If e is mobile then Γnon does not change
at all, and (a) holds. So assume that e is non-mobile, which implies that e′ is also
non-mobile, by Lemma 3.17. Now the slide move takes place entirely within Γnon, and
induces a homotopy equivalence Γnon ' Γ′

non of underlying graphs. Thus the simply
connected components are preserved and (a) holds.

Now consider part (b). If e and e′ are non-mobile then the preferred mobile edges

ei do not change, nor do o(ei) and λ(ei). Thus Γ̂i and Γ̂′

i are equivalent in R̂LG(Gi).
If e is mobile then it must be an s–mobile edge (cf. Definition 4.5) and so e is ei or

ēi for some i. If e = ēi then o(ei) and λ(ei) do not change, and Γ̂i = Γ̂′

i for all i. Now

suppose that e = ei. If e′ is non-mobile and is in Γi for some i then Γ̂i and Γ̂′

i are

equivalent in R̂LG(Gi). If e′ is non-mobile and not in any Γi then Γ̂i = Γ̂′

i for each i.
Lastly, suppose that e = ei and e′ is mobile. Note that o(e) is not the vertex of

an ascending loop, since e is s–mobile and preferred. Hence e′ is also an s–mobile
edge. It is not preferred because no two preferred mobile edges have a common initial
vertex. Thus e′ = ēj for some j 6= i. Note that before the slide, o(e) = o(e′) ∈ Γi

and t(e′) ∈ Γj, and after the slide, o(e) = t(e′) ∈ Γj and o(e′) ∈ Γi. Thus, by the
uniqueness property of Lemma 4.7, ei becomes ej and ej becomes ēi. We also have

v̂i = v̂′

i and Γ̂i = Γ̂′

i for all i.

The only remaining issue is the labels λ̂i, λ̂j and λ̂′

i, λ̂
′

j. We will show that λ(e) =

±λ(e′), which implies that λ̂i = ±λ̂′

i and λ̂j = ±λ̂′

j, completing the proof. There are
two cases.
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If e′, ē′ 6∈ γ, then since this is a mobile edge, the geometric edge {e′, ē′} can slide to
and around γ in the positive direction. Since e′ separates t(e′) from γ, the endpoint
t(e′) can never meet γ after sliding {e′, ē′}. Hence it is e′, and not ē′, which slides to
and around γ. Such a slide sequence includes a slide of e′ over e (whether e ∈ γ or
e 6∈ γ). Also, just before this particular slide, the label λ(e′) has not changed, since
o(e′) has remained within a subtree of Γ until this point. Hence λ(e) divides λ(e′).
On the other hand, since e can slide over e′, we have that λ(e′) divides λ(e).

If ē′ = ej ∈ γ then write γ as (ei, γ0, ej). Note that |S(Γ, e′)| < ∞ since Γ− {e′, ē′}
is a tree. Hence e′ is part of a strict monotone cycle, which we may take to be
embedded, and must then be either (ei, γ0, ej) or (γ̄0, ēi, ēj). The second case does
not occur since this cycle has modulus 1/q, which is not in Z − {±1}. So ēj = e′ can
slide over ei = e, and λ(e) divides λ(e′). But e can slide over e′, and so λ(e′) divides
λ(e). �

Remark 4.13. It can be shown that conclusion (a) holds even without the assump-
tion that b(Γ) = 1. More specifically, all three types of moves preserve the connected
components of the non-mobile subgraph. (Recall from Remark 3.16 that the set of
non-mobile edges is preserved by the three moves.)

Definition 4.14. We may now define an invariant for non-elementary GBS groups G
with b(G) = 1. Choose Γ ∈ RLG(G) and let P(G) be the collection of pointed labeled

graph spaces {R̂LG(Γ̂i)} indexed by the conjugacy classes of non-mobile subgroups of
G. By Theorem 4.12, P(G) is independent of the choice of Γ.

Moreover P(G) is computable: given labeled graphs representing G and G′, one
may write down representatives for the collections P(G) and P(G′), and determine
algorithmically whether P(G) = P(G′), by Proposition 4.10.

4.2. Ascending Betti number one GBS groups. Let G be an ascending GBS
group with b(G) = 1. Recall that q(G) ⊂ Q× is generated by q = q(γ) where γ
is an (oriented) embedded cycle. Since G is ascending, q ∈ Z and |q| > 1. Let
F (q) ⊂ Q× be the subgroup generated by the integral factors of q. We will define an
invariant ξ(G) ∈ (Q×/〈q〉)s/F (q), where s = s(G) and F (q) acts diagonally on the
group (Q×/〈q〉)s.

Given a labeled graph in Γ ∈ RLG(G), let Γi and Gi be defined as in Section 4.1,
and let e1, . . . , es be the preferred mobile edges defined by Lemma 4.7. Also choose a
mobile edge e ∈ γ, called the reference edge. This edge may or may not be among the
edges ei, depending on whether the strict monotone cycle is an ascending loop. Based
on e, we will define an element ξi ∈ Q×/〈q〉 for each Gi, and the resulting s–tuple
will represent the invariant ξ(G).

First we claim that there are lifts ẽ, ẽ1, . . . , ẽs in the Bass–Serre tree of Γ such that
Gẽi

⊆ Gẽ for each i. Note that we are free to perform slide moves without affecting
this claim. If e is a strict virtually ascending loop, then all mobile edges in Γ can
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be slid to be adjacent to e. Then lifts can be chosen so that t(ẽi) = o(ẽ) for each i,
which implies that Gẽi

⊆ Gẽ. Otherwise, if e is not a virtually ascending loop, then
it is part of a strict monotone cycle, and it can be made into a virtually ascending
loop by slide moves. Now choose lifts as before.

We define ξi = [Gẽ : Gẽi
]. Note that a different choice of ẽi defines the same element

of Q×/〈q〉, because the two lifts are related by an element of G with modulus a power
of q. A different choice of ẽ also makes no difference, by transport of structure. Now
define ξ(Γ) ∈ (Q×/〈q〉)s/F (q) to be the element represented by (ξ1, . . . , ξs).

Lemma 4.15. The element ξ(Γ) ∈ (Q×/〈q〉)s/F (q) is independent of the choice of
reference edge.

Proof. Consider ξ′(Γ) defined using a reference edge e′ ∈ γ instead of e. We will show
that there are lifts ẽ, ẽ′ such that Gẽ′ ⊆ Gẽ and [Gẽ : Gẽ′] is a factor of q. Then the
s–tuples (ξ1, . . . , ξs), (ξ

′

1, . . . , ξ
′

s) ∈ (Q×/〈q〉)s differ by this factor, and are equivalent
in (Q×/〈q〉)s/F (q).

Reversing orientations of e, e′ if necessary, the cycle γ can be written as (α, e, β, e′).
Both (α, e, β, e′) and (β, e′, α, e) are strict monotone cycles, because e and e′ are
mobile. Now λ(e) divides q(α)λ(ē′), as (α, e, β) is an ē′–edge path. Similarly λ(e′)
divides q(β)λ(ē). Hence the modulus q can be written as the product of two integers:

q =
q(α)λ(ē′)

λ(e)

q(β)λ(ē)

λ(e′)
.

Lifting the path (e′, α, e) to (ẽ′, α̃, ẽ) we obtain ẽ and ẽ′ with Gẽ′ ⊆ Gẽ. Since e′ can

slide over (α, e), we have [Gẽ : Gẽ′ ] =
∣∣∣ q(α)λ(ē′)

λ(e)

∣∣∣. Hence this index divides q. �

Next we show that ξ(Γ) is an invariant of G, and hence may be denoted ξ(G).

Proposition 4.16. For any two graphs Γ, Γ′ ∈ RLG(G) we have ξ(Γ) = ξ(Γ′).

Proof. By Theorem 2.5, we may assume that Γ′ is obtained from Γ by a slide, induc-
tion, or A ±1–move. We consider the case of a slide move first.

Since b(Γ) = 1, the slide move does not create or remove strict ascending loops,
and so the set of s–mobile edges is unchanged. We may also choose a reference edge
e ∈ Γ that remains on the embedded circuit in Γ′. Thus, the collection of edges
e, e1, . . . , es and their lifts, used to define ξ, can be chosen to agree for Γ and Γ′. The
only change to be accounted for in passing from Γ to Γ′ is that the correspondence
between s–mobile edges and conjugacy classes of non-mobile subgroups may change.
That is, the indexing of the entries of ξ(Γ) may change.

Recall from the proof of Theorem 4.12 that if one s–mobile edge slides over another,
then their indices and preferred orientations may be exchanged. However, it was
shown that whenever this occurs, the labels of the two edges at their common vertex
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are the same, up to sign. Thus, choosing adjacent lifts ẽi and ẽj, we have Gẽi
= Gẽj

,
and therefore ξi = ξj. It follows that ξ(Γ) = ξ(Γ′).

If Γ and Γ′ differ by an induction move, then there are strict ascending loops e ∈ Γ
and e′ ∈ Γ′ along which the move occurs. These edges will be the reference edges for
ξ. The s–mobile edges for Γ and Γ′ will be the same, with the same indexing, since
the move does not affect the non-mobile subgraph. Thus we may choose the same
lifts ẽi for Γ and for Γ′. We may also choose the lifts ẽ and ẽ′ so that Gẽ ⊆ Gẽ′ and
[Gẽ′ : Gẽ] is a factor m of q. (Even though ẽ and ẽ′ are in different trees, this can be
arranged.) Then ξi(Γ

′) = mξi(Γ) for all i, and so ξ(Γ′) = ξ(Γ).
Now suppose that Γ′ is obtained from Γ by an A −1–move, exactly as pictured in

Definition 2.3. In Γ, the edge with labels ` and k is an s–mobile edge, say e1, with
initial vertex v on the right. The loop is the reference edge e. Choose a lift ẽ1 and
let ṽ be its initial vertex. The A −1–move does not affect ṽ, and the loop e′1 ∈ Γ′ has
a lift ẽ′1 with initial vertex ṽ, with the same stabilizer as ẽ1. Note that e′1 is indeed
the s–mobile edge in Γ′ corresponding to G1. The other non-mobile subgraphs and
s–mobile edges are unchanged. Thus, the stabilizers of lifts of s–mobile edges may
be chosen to agree for Γ and Γ′. What has changed, however, is the reference edge.
The reference edge for Γ′ is e′1, whose lift ẽ′1 has stabilizer Gẽ1

. The reference edge for
Γ is the loop e, which has a lift ẽ adjacent to ẽ1, with Gẽ1

⊆ Gẽ and [Gẽ : Gẽ1
] = `.

Now ξi(Γ
′) = `ξi(Γ) for all i, and ξ(Γ′) = ξ(Γ), since ` divides q. �

Next we define normal forms for the labeled graphs under discussion.

Definition 4.17. Suppose Γ is a reduced labeled graph with first Betti number one,
in an ascending deformation space. We say that Γ is in normal form if it has a strict
ascending loop, every mobile edge is adjacent to this loop, and every label (except
possibly the label q on the loop) is positive. Note that if Γ is in normal form, then the
s–mobile edges are exactly the edges adjacent to the loop, and ξ(G) is represented
by the s–tuple (λ(ē1), . . . , λ(ēs)).

Every Γ with b(Γ) = 1 in an ascending deformation space can be put into normal
form, as follows. First, there is a strict monotone cycle, which can be made into a
strict virtually ascending loop by slide moves. If necessary, this can be made into
a strict ascending loop by an A –move. Then all s–mobile edges can be slid to be
adjacent to the loop. Lastly, since b(Γ) = 1, the labels (other than q) can be made
positive by admissible sign changes.

Example 4.18. Figure 3 shows two reduced labeled graphs in normal form repre-
senting groups G, G′. In both cases the invariant ξ is the equivalence class of the pair
(1, 1) ∈ (Q×/〈2〉)2. The invariant P(G) is represented by a pair of pointed labeled
graphs, each consisting of a single vertex, with distinguished labels 2 and 2. On the
other hand, P(G′) is represented by two vertices with distinguished labels 2 and 4.
Thus, we conclude that G and G′ are not isomorphic. Note that, simple as they
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are, these two groups are not covered by any of the previously known results on the
isomorphism problem (including Theorem 3.29).
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Figure 3. Two non-isomorphic GBS groups.

Theorem 4.19. Let G, G′ be ascending Betti number one GBS groups such that
s(G) = s(G′) and q(G) = q(G′). Then G and G′ are isomorphic if and only if
their non-mobile subgroups are isomorphic, and under this correspondence between
conjugacy classes of non-mobile subgroups, we have ξ(G) = ξ(G′) and P(G) = P(G′).

Proof. Let (Γ, λ) and (Γ′, λ′) be reduced labeled graphs in normal form representing
G and G′ respectively. The “only if” direction was proved in Theorem 4.12 and
Proposition 4.16. For the other direction we will show that Γ and Γ′ are related by a
deformation (considered as unmarked labeled graphs), which implies that G ∼= G′.

Let G1, . . . , Gs be the common non-mobile subgroups of G and G′, and let Γi and
Γ′

i be the corresponding components of Γnon and Γ′

non. Then since P(G) = P(G′), the

pointed labeled graphs Γ̂i and Γ̂′

i are equivalent in R̂LG(Gi). Hence, using the mobile

edge ei as the distinguished edge for Γ̂i, there is a deformation of Γ, supported in
Γ̂i ∪ ei, making Γ̂i isomorphic to Γ̂′

i as pointed labeled graphs. Thus, we may now

assume that Γ̂i and Γ̂′

i agree for all i.
Since the graphs are in normal form, the only possible difference between Γ and Γ′

is in the labels λ(ēi) and λ′(ēi). Since ξ(G) = ξ(G′), the s–tuples (λ(ē1), . . . , λ(ēs))
and (λ′(ē1), . . . , λ

′(ēs)) are equivalent in (Q×/〈q〉)s/F (q). By performing induction
moves, the s–tuples can be made equivalent in (Q×/〈q〉)s. Now λ(ēi) and λ′(ēi) differ
by a factor of a power of q. By slide moves of ēi over the ascending loop or its reverse,
these labels can be made to agree for all i. �

4.3. Non-ascending Betti number one GBS groups. Let G be a non-ascending
GBS group with b(G) = 1. Suppose also that G is not unimodular, and that the
modular group q(G) is generated by an integer q. (Otherwise, we are in the situation
covered by [7], or alternatively, Theorem 3.29.) For now, we will also assume that q
is positive. Let the unique embedded cycle γ ⊆ Γ be oriented so that q(γ) = q > 1.

An edge has infinite slide space if and only if it can slide to γ and around it at
least once in the positive direction. If it can slide once all the way around, then it
can do so infinitely many times, since its label is multiplied by q each time. No edge
can slide infinitely many times around in the negative direction, since no integer is
infinitely divisible by q.
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Since there are no strict monotone cycles, γ does not contain any mobile edges,
and hence is contained in a component Γ0 of Γnon. This is the unique component of
Γnon that is not simply connected.

Definition 4.20. Let Γ be a reduced labeled graph with b(Γ) = 1 in a non-ascending,
non-unimodular deformation space, with modulus a positive integer. Let γ ⊆ Γ be
the unique embedded cycle, oriented so that q(γ) > 1. We say that Γ is in normal
form if its labeling is positive and every mobile edge is adjacent to γ, and cannot
slide along γ in the negative direction. Clearly, any Γ can be put into normal form,
by sliding the mobile edges to and along γ̄ as far as they will go.

Theorem 4.21. Let G be a non-ascending, non-unimodular GBS group with b(G) = 1
and q(G) generated by q ∈ Z>0. Then RLG(G) contains only finitely many labeled
graphs in normal form, and these can be enumerated effectively from any Γ ∈ RLG(G).

Proof. Suppose Γ′ ∈ RLG(G) is in normal form. Let f1, . . . , fk represent the geometric
non-mobile edges of Γ. By Corollary 3.24 there are sequences of slide moves

Γ = Γ0 → Γ1 → · · · → Γk → Γ′

such that the moves Γi−1 → Γi are slides of fi, f̄i only, and the moves Γk → Γ′

are slides of mobile edges only. Thus we have Γi ∈ S(Γi−1, fi) for each i, and since
each slide space S(Γi−1, fi) is finite, there are only finitely many possibilities for the
labeled graph Γk. These graphs can be found effectively by searching the slide spaces
S(Γi−1, fi). It now suffices to consider the case when Γ = Γk, i.e. when Γ and Γ′ are
related by slide moves of mobile edges only.

The only ambiguity now in determining Γ′ is in the positioning and labels of the
mobile edges, since the non-mobile subgraphs of Γ and Γ′ agree. Note that every
mobile edge joins Γ0 to another component Γi (since Γ is in normal form). Let Gi be
the non-mobile subgroup corresponding to Γi.

Fix a vertex v ∈ γ and a lift ṽ in the Bass–Serre tree for Γ. Every mobile edge
ēi may be slid (in the positive direction) along γ to v, after which the label on ēi is
ni = [Gṽ : Gṽ ∩ (Gi)

g] for some g ∈ G. Modulo q, this index is independent of g, so
[ni] ∈ Q×/〈q〉 depends only on Γ and the choice of v.

We claim that in fact, ni itself depends only on the choice of v. Namely, no other
representative qmni of [ni] (m ∈ Z) has the property that an edge e′ at v with label
qmni can slide around γ in the positive direction but not in the negative direction.
To see this, slide the edge with smaller label |m| times forward, so the two labels
will agree. But then the other edge could have been slid around γ in the negative
direction.

Now, once ni is known, the edge ēi can be slid back to its original position in normal
form. This position and the resulting label on ēi are determined by ni. Hence, for
any labeled graph in normal form obtained from Γ by sliding mobile edges only, the
labels and initial endpoints of ēi are uniquely determined.
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It remains to determine the initial vertices o(ei) and labels λ′(ei) in Γ′. The pointed

labeled graphs Γ̂i and Γ̂′

i have the same underlying labeled graphs, and are equivalent

in P(Gi). Thus, all possible initial vertices v̂′

i = o(ei) and labels λ̂′

i = λ′(ei) are
obtained by sliding the initial endpoint of ei within Γi, by Corollary 2.6. Since Γi

is simply connected, this slide space is finite and can be searched effectively (cf.
Proposition 4.10). �

We can now prove Theorem 1.2. Recall that this theorem solves the isomorphism
problem in the case where one of the labeled graphs has first Betti number at most
one.

Proof of Theorem 1.2. Let Γ and Γ′ be labeled graphs defining GBS groups G and
G′, where b(Γ) 6 1. If q(G) is not generated by an integer then the algorithm of [7,
Corollary 8.3] determines whether G ∼= G′. Hence we may assume that b(Γ) = 1 and
q(G) is generated by q ∈ Z with |q| > 1. We may also assume that b(Γ′) = 1 and
q(G′) = q(G), since otherwise G 6∼= G′. Moveover, we may assume that q is positive,
by Lemma 2.7, since the orientation homomorphisms of Γ and Γ′ agree.

Now make both graphs reduced by performing collapse moves, and check whether
Γ and Γ′ are ascending (cf. Remark 4.4). If one is ascending and the other is not, the
groups are not isomorphic. If both are ascending, then put both into normal form
and verify that s(Γ) = s(Γ′) (if not, then G 6∼= G′). Then identify the subgraphs Γi, Γ′

i

and consider permutations σ ∈ Ss. For each permutation, check whether Gi
∼= G′

σ(i)

for all i (these GBS groups are unimodular, so they can be compared). If so, call σ
an admissible permutation and then re-index the components of Γ′

non using σ, so that
Gi

∼= G′

i for all i. Evaluate and compare the invariants ξ(G), ξ(G′) and P(G), P(G′),
using Proposition 4.10. By Theorem 4.19, G and G′ are isomorphic if these invariants
agree. If the invariants disagree for every admissible permutation, then G 6∼= G′, again
by Theorem 4.19.

If both graphs are non-ascending, then put them into normal form. Using Theorem
4.21, enumerate from Γ all labeled graphs in RLG(G) in normal form. Then G ∼= G′

if and only if Γ′ is on this list. �
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