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Abstract. We show that for any subgroup H of Out(FN ), either H contains an atoroidal element or

a finite index subgroup H′ of Hfixes a nontrivial conjugacy class in FN . This result is an analog of

Ivanov’s subgroup theorem for mapping class groups and Handel–Mosher’s subgroup theorem for

Out(FN ) in the setting of irreducible elements.

Introduction

Let S be an orientable surface of finite type with χ(S) < 0 and f : S → S be an orientation

preserving homeomorphism. Nielsen–Thurston classification states that after replacing f with an

isotopic homeomorphism, there is an invariant collection of disjoint essential simple closed curves

C (possibly empty) so that the complement of an open collar neighborhood of C decomposes

into invariant subsurfaces (possibly disconnected), where the restriction of f to each subsurface is

either finite order or pseudo-Anosov [9, 28]. In particular, if the action of f on the set of isotopy

classes of essential simple closed curves does not have a finite orbit, then f is isotopic to a pseudo-

Anosov homeomorphism. For our purposes, we will not need the definition of a pseudo-Anosov

homeomorphism but we note that such homeomorphisms have a very rigid structure and possess

desirable dynamical properties. One such example is a theorem of Thurston that states that the 3–

manifold M f , called themapping torus of f , obtained from S×[0, 1] by gluing S×{1} to S×{0} via f ,
admits a hyperbolic structure if and only if f is isotopic to a pseudo-Anosov homeomorphism [27].

The importance of Thurston’s result is magnified by the recent breakthrough results of Agol

proving that every closed hyperbolic 3–manifold has a finite cover that fibers over the circle, i.e.,

can be obtained by the above construction [1].

Ivanov strengthened the Nielsen–Thurston classification of homeomorphisms to subgroups of

the mapping class group Mod(S), the group of isotopy classes of orientation preserving homeo-

morphisms of S. Specifically, he proved that if the action of a subgroup H < Mod(S) on the set

of isotopy classes of essential simple closed curves does not have a finite orbit, then H contains

a pseudo-Anosov element, i.e., the isotopy class of a pseudo-Anosov homeomorphism [20]. A

priori, each element in H could have a finite orbit and yet the subgroup might not have a finite

orbit. What Ivanov proves is that if two elements in Hhave sufficiently transverse finite orbits (in

a precise sense), then some product of their powers is pseudo-Anosov. Ivanov accomplishes this

using classical ping-pong and other dynamical arguments on the space of projectivized measured

laminations on S.
The outer automorphism group of a non-abelian free group FN of finite rank is the quotient

Out(FN) � Aut(FN)/Inn(FN). This group is closely related to Mod(S), in particular by the Dehn–

Nielsen–Baer theorem, see [14]. During the last 30 years, the development of the theory of Out(FN)
has closely followed that of Mod(S), and to some extend that of GL(n ,Z) as well. Examples of

this beneficial analogy include the introduction of the Culler–Vogtmann outer space [12], the

construction of train-track representatives [6] andmore recently an investigation into the geometry

of the free factor and free splitting complexes [3, 17].
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The notion of a pseudo-Anosov element in Mod(S) has two analogs in Out(FN). One of these

uses the characterization of pseudo-Anosovs as the (infinite order) elements in Mod(S) that do not

restrict to a proper subsurface. An outer automorphism ϕ ∈ Out(FN) is called fully irreducible if no
positive power of ϕ fixes the conjugacy class of a proper free factor, i.e., the action of ϕ on the set

of conjugacy classes of proper free factors does not have a finite orbit (see Section 1 for complete

definitions). Like pseudo-Anosov elements, these outer automorphisms have a very rigid structure

and possess desirable dynamical properties.

The other analog uses the characterization of pseudo-Anosovs as the elements whose mapping

torus admits a hyperbolic metric. An outer automorphism ϕ ∈ Out(FN) is called atoroidal if no
positive power of ϕ fixes the conjugacy class of a nontrivial element in FN , i.e., the action of ϕ on

the set of conjugacy classes of nontrivial elements on FN does not have a finite orbit. Paralleling the

result of Thurston about fibered 3–manifolds, combined results of Bestvina–Feighn andBrinkmann

show that the semi-direct product using the automorphism Φ ∈ Aut(FN):

FN oΦ Z � 〈x1 , . . . , xN , t | t−1xi t � Φ(xi)〉
is δ–hyperbolic if and only if the outer automorphism class [Φ] ∈ Out(FN) is atoroidal [2, 8].

Our main result is the analog of Ivanov’s theorem in the setting of Out(FN) corresponding to

atoroidal elements.

Theorem A. Let H be a subgroup of Out(FN) where N ≥ 3. Either H contains an atoroidal element or
there exists a finite index subgroup H′ of H, and a nontrivial element g ∈ FN such that H′[g] � [g].

When N � 2 the theorem holds as well. This follows as Out(F2) is naturally isomorphic to the

extended mapping class group of a torus with a single boundary component and hence every

subgroup has an index two subgroup that fixes the conjugacy class corresponding to the boundary

component.

Essential to our proof of this theorem is the analog of Ivanov’s theorem in the setting of Out(FN)
corresponding to fully irreducible elements as recently shownbyHandel–Mosher [18]. Specifically,

they prove that for a finitely generated subgroupH< Out(FN), eitherHcontains a fully irreducible

element or there exists a finite index subgroup H′ of H, and a proper free factor A < FN such

that H′[A] � [A]. The idea of their proof is similar in spirit to that of Ivanov. If two elements in

H have sufficiently transverse finite orbits on the set of conjugacy classes of proper free factors,

then some product of their powers is fully irreducible. In this setting Handel–Mosher use the

action on the space of laminations on FN . Later, Horbez generalized this result to all subgroups of

Out(FN) dropping the finitely generated assumption using the action of Out(FN) on the free factor

complex [19].

Whereas Ivanov’s theorem allows for repeated inward application to decompose a surface

completely relative to the action of some subgroup H < Mod(S), the above stated version in

Out(FN) for fully irreducible elements does not. The difference arises as if a subsurface is invariant,

so is its complement, but if the conjugacy class of a proper free factor A is invariant, there is no

reason why there must be an invariant splitting A ∗ B. Handel–Mosher have extended their above

mentioned result to give a complete decomposition of FN relative to the action of some finitely

generated subgroup H < Out(FN). Specifically, they show that for any maximal H–invariant

filtration ∅ � F0 @ F1 @ · · · @ Fk � {[FN]} of free factor systems, if the extension Fi−1 @ Fi is

multi-edge, then there is an element ϕ ∈ Hwhich is fully irreducible with respect to this extension

(see Section 1 for full details). More recently, Horbez–Guirardel generalized this classification to

all subgroups of Out(FN) using the action of Out(FN) on several hyperbolic complexes [16].

The proof of Theorem A builds on the above subgroup decomposition results. The general

strategy is to work from the bottom up: if H contains an element whose restriction to Fi−1 is

atoroidal eitherwe find an element inFi whose orbit is finite, orwe produce an element inHwhose
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restriction to Fi is atoroidal. Techniques and results from Handel–Mosher and Guirardel–Horbez

take care of the case when Fi−1 @ Fi is a multi-edge extension. The single-edge case requires a

different approach. Indeed, when Fi−1 @ Fi is a single-edge extension, the corresponding space

of laminations is empty and so Handel–Mosher techniques do not apply. On the other hand,

trying to prove Theorem A using solely by hyperbolic geometric methods is hopeless. There are

commuting non-atoroidal elements in Out(FN) whose product is atoroidal (an example appears

below) which implies there is no δ–hyperbolic Out(FN) complex whose loxodromic isometries are

precisely atoroidal elements [26].

In order to deal with single-edge extensions, we use the space of geodesic currents Curr(FN)
(see Section 2 for full details). This is the natural space for exhibiting that an element is atoroidal

as it can be naturally viewed as the closure of the space of conjugacy classes in FN . Our main

technical result, Theorem 4.15, analyzes the dynamics of an element ϕ ∈ Out(FN) that leaves
invariant a co-rank 1 free factor A and whose restriction to A is atoroidal. If ϕ is not atoroidal, we

show that there are simplices ∆+ ,∆− in PCurr(FN) and a counting current [ηg] for which ϕ has

generalized north-south dynamics with ∆̂+ � Cone(∆+ , [ηg]) and ∆̂− � Cone(∆− , [ηg]). Specifically,

points outside of a neighborhood of ∆̂− are moved by ϕ into a neighborhood of ∆+ and vice

versa for ϕ−1
(see Figure 1). This set-up is akin to the set-up for a nonatoroidal fully irreducible

element (which necessarily is a pseudo-Anosov homeomorphism of a surface with one boundary

component), where the fixed counting current corresponds to the boundary component of the

associated surface [30, Theorem B]. This result is of independent interest as there is little known

about the action of nonatoriodal elements on Curr(FN) in general.

A natural question is whether there is a stronger conclusion to Theorem A. Precisely, is it the

case that if H < Out(FN) contains an atoroidal element, must it be that either H is virtually

cyclic or else contains a subgroup isomorphic to F2 in which every nontrivial element is atoroidal?

The corresponding analog in the setting of Mod(S) is true and was shown by Ivanov [20]; the

correspondinganalog for fully irreducible elements inOut(FN) is true andwas shownbyKapovich–

Lustig [23]. In the present setting however, the stronger conclusion does not hold. The key point,

as it was for obstructing a δ–hyperbolic complex whose loxodromic isometries are precisely the

atoroidal elements, is that the centralizer of an atoroidal element is not virtually cyclic in general.

Indeed, if ϕ ∈ Out(F3) is atoroidal, then so is ϕ ∗ϕ ∈ Out(F3 ∗F3). The subgroup H� 〈ϕ ∗ id, id ∗ϕ〉
is free abelian of rank 2 and contains an atoroidal element.

In light of the above discussion, one might conjecture that if H< Out(FN) contains an atoroidal

element ϕ, then either Hvirtually centralizes ϕ: for all h ∈ H, there is an n > 0 such that hϕn � ϕn h
orHcontains a subgroup isomorphic to F2 inwhich everynontrivial element is atoroidal. However,

even this weaker statement is not true. For example, take atoroidal elements ϕ, ψ ∈ Out(F3) such
that 〈ϕ, ψ〉 � F2 and consider the subgroup H� 〈ϕ ∗ϕ, ϕ ∗ψ〉 ⊂ Out(F6). Any non-trivial element

of H is of the form ϕn ∗ ω where n ∈ Z and ω ∈ 〈ϕ, ψ〉 is non-trivial. In particular H does not

virtually centralize any of its non-trivial elements. However, given any two elements θ1 , θ2 ∈ H,

we have θ1 � ϕn1 ∗ω1 and θ2 � ϕn2 ∗ω2 and thus we find that θn2

1
θ−n1

2
� id ∗ωn2

1
ω−n1

2
which is not

atoroidal. Therefore 〈θ1 , θ2〉 is not purely atoroidal.

The right characterization is the following statement.

Theorem B. Let H< Out(FN) be a subgroup which contains an atoroidal element ϕ. Then, H contains a
purely atoroidal free subgroup if and only if the restriction of H to each minimal H–invariant free factor is
not virtually cyclic.
Proof. The “if” direction follows from [31, Lemma 4.3]. For the other direction, let A < FN be a

minimalH–invariant free factor such that the restriction ofHto A is virtually cyclic (see Section 1.3

for definitions). The proof of [31, Lemma 4.3] implies that the restriction of each element in H to

A has a power which is equal to a power of the restriction of ϕ to A. Now assume that Hcontains
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a subgroup isomorphic to F2, generated by ψ1 , ψ2. By above observation, there exist nonzero

integers n1 , n2 , k such that ψ1

��n1

A � ϕ
��k
A � ψ2

��n2

A . Then the element ψn2

1
ψ−n1

2
∈ 〈ψ1 , ψ2〉 fixes each

element in A and hence is not atoroidal. Thus the subgroup 〈ψ1 , ψ2〉 is not purely atoroidal. �

Organizationofpaper. Section 1 reviews the theory of outer automorphismsneeded. Inparticular,

the notions of free factor systems, the Handel–Mosher subgroup decomposition and train tracks

are recalled. Definitions of geodesic currents are presented in Section 2. As mentioned above,

we deal separately with multi-edge and single-edge extensions. Section 3 shows how to apply

the results of Handel–Mosher and Guirardel–Horbez to push past multi-edge extensions. The

main technical result, that of generalized North-South dynamics for co-rank 1 atoroidal elements,

constitutes the majority of Section 4. In Section 5, we show how to apply this result to push past

single-edge extensions. Lastly, in Section 6, we combine the above two cases to complete the proof

of Theorem A.

Acknowledgements. The authors thank Camille Horbez for telling them about his upcoming

work with Guirardel [16] and useful discussions. Second author is grateful to Jon Chaika for

illuminating discussions regarding ergodic theory. The authors also thank the anonymous referee

for a careful reading and several helpful suggestions.

1. Outer automorphisms and train tracks

In this section we collect definitions and some of the fundamental results regarding Out(FN)we

use in the sequel.

1.1. Graphs, maps and markings. A graph G is a 1–dimensional cell complex. The 0–cells of G
are called vertices, and the 1–cells of G are called (topological) edges. We denote the set of vertices

by VG and the set of edges by EtopG. Identifying the interior of each topological edge e ∈ EtopG
with the open interval (0, 1)we get exactly two orientations on e. The set of oriented edges of G is

denoted by EG. For each edge e ∈ EtopG, we choose a positive orientation for e, and denote the set

of positively oriented edges by E+G. Given an oriented edge e ∈ EG, the edge with the opposite

orientation is denoted by e−1
. Furthermore, we denote the initial point of the oriented edge e by

o(e) and the terminal point by t(e).
Of particular importance is the N–rose, denoted by RN , which is the graph with a single vertex

v and N edges. We fix an isomorphism FN � π1(RN , v) which we will use implicitly throughout.

Using this isomorphism, homotopy equivalences of RN determine outer automorphisms of FN
and vice versa.

An edge path γ of length n is a concatenation γ � e1e2 . . . en of oriented edges in G such that

t(ei) � o(ei+1) for all i � 1, . . . , n − 1. The length of a path is denoted by |γ |. The edge path

γ as above is called reduced if ei , e−1

i+1
for all i � 1, . . . , n − 1. Further, a reduced edge path

γ � e1e2 . . . en is called cyclically reduced if t(en) � o(e1) and en , e−1

1
. For any edge path γ, there is

a unique reduced edge path [γ] homotopic to γ rel endpoints.

A (topological) graph map f : G0 → G1 is a homotopy equivalence where:

• f (VG0) ⊆ VG1; and

• the restriction of f to interior of an edge is an immersion.

These conditions imply that for each oriented edge e ∈ EG0, the image f (e) determines a reduced

edge path. A graph map m : RN → G is called a marking of G. Suppose m : RN → G is a

marking and fix a graph map m′ : G → RN that is homotopy inverse to m. We say that a graph

map f : G → G is a topological representative of the outer automorphism ϕ ∈ Out(FN) if the outer

automorphism determined by the homotopy equivalence m′ ◦ f ◦ m : RN → RN is ϕ.
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A filtration for a topological representative f : G → G is an increasing sequence of f –invariant
subgraphs ∅ � G0 ⊂ G1 ⊂ · · · ⊂ G` � G. The rth-stratum in this filtration, denoted by Hr , is

the closure of Gr − Gr−1. Associated to each stratum Hr there is a square matrix whose row and

columns are indexed by the edges in Hr called the transition matrix Mr , which is non-negative and

has integer entries. The i jth entry of Mr records the number of times the reduced path f (ei) crosses
the edge e j or the edge e−1

j .

Recall, a non-negative square matrix M is called irreducible if for each i , j, there exists p � p(i , j)
such that Mp

i j > 0. We say that the stratum Hr is irreducible if the associated transition matrix Mr is

irreducible. If Mr is irreducible then it has a unique eigenvalue λr ≥ 1 called the Perron-Frobenius
eigenvalue, for which the associated eigenvector is positive. We say that Hr is an exponentially
growing (EG) stratum if λr > 1. We say that Hr is a non-exponentially growing (NEG) stratum if

λr � 1. Finally, we say that Hr is a zero stratum if Mr is the zero matrix.

1.2. Free factor systems and geometric realizations. A free factor A < FN is a subgroup of FN such

that FN � A ∗ B where B < FN is a (possibly trivial) subgroup of FN . A free factor is called proper if
it is neither the trivial subgroup nor FN . The conjugacy class of a free factor A is denoted by [A]. A
free factor system F� {[A1], . . . , [Ak]} is a collection of conjugacy classes of free factors of FN such

that

FN � A1 ∗ A2 ∗ · · · ∗ Ak ∗ B

for some representatives Ai
of [Ai] and for some (possibly trivial) subgroup B < FN .

A subgraph K ⊆ G of a marked graph G determines a free factor system F(K) of FN in the

following way. Enumerate the non-contractible components of K by C1 , . . . , Ck , fix vertices vi ∈ Ci
and edge paths γi from vi to v (some arbitrary vertex of G). These paths induce inclusions

π1(Ci , vi) → π1(G, v). The conjugacy classes of the images do not depend on the vertices vi nor

the paths γi and the collection {[π1(C1 , v1)], . . . , [π1(Ck , vk)]} is a free factor system of π1(G, v).
Using the marking of G we obtain a free factor system F(K) of FN .

There is a natural partial order among free factor systems. Given free factor systems F0 �

{[A1], . . . , [Ak]} and F1 � {[B1], . . . , [B`]} we say that F0 is contained in F1 (or F1 is an extension of

F0) and write F0 @ F1 if for each i � 1, . . . , k, there exist j ∈ {1, . . . , `} and g ∈ FN such that Ai
is a

subgroup of gB j g−1
. An extension F0 @ F1 is called a single-edge extension if there exists a marked

graph G with subgraphs G0 ,G1 such that F(G0) � F0, F(G1) � F1 and G1 − G0 is a single edge.

Otherwise, F0 @ F1 is called amulti-edge extension. There are three types of single-edge extensions.
In a circle extension G1 is obtained from G0 by adding a disjoint loop edge. In a barbell extension, a
single edge is attached to two distinct components of G0. Finally, attaching an edge to the same

component of G0 gives a handle extension.
A filtration of FN by free factor systems is an ascending sequence ∅ � F0 @ F1 @ · · · @ Fk � {[FN]}

of free factor systems. We say that a filtration ∅ � F0 @ F1 @ · · · @ Fk � {[FN]} is realized by the

filtration ∅ � G0 ⊂ G1 ⊂ · · · ⊂ G` � G of a marked graph G if for each i � 1, . . . , k there is an

j ∈ {1, . . . , `} such that Fi � F(G j).

1.3. Relative outer automorphisms. Outer automorphisms act on the set of conjugacy classes of

free factors and on the set of free factor systems. An element ϕ ∈ Out(FN) is irreducible if there does
not exist a proper free factor system F such that ϕF� F; ϕ is fully irreducible if ϕp

is irreducible

for all p ≥ 1. If F0 @ F1 is a ϕ–invariant extension, we say ϕ is irreducible with respect to F0 @ F1

if there does not exist a ϕ–invariant factor free system F , F0 ,F1 such that F0 @ F @ F1; ϕ is

fully irreducible with respect to F0 @ F1 if ϕp
is irreducible with respect to F0 @ F1 for all p ≥ 1.

Irreducibility is equivalent to irreducibility with respect to the extension {[〈1〉]} @ {[FN]}.
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We usually work with elements in the finite-index subgroup:

IAN(Z/3) � ker

(
Out(FN) → Aut(H1(FN ,Z/3))

)
.

For elements in this subgroup, periodic phenomena become fixed. In particular, Handel–Mosher

showed that for any ϕ ∈ IAN(Z/3):
(1) any ϕ–periodic free factor system in FN is fixed by ϕ [18, Part II, Theorem 3.1]; and

(2) any ϕ–periodic conjugacy class in FN is fixed by ϕ [18, Part II, Theorem 4.1].

Thus irreducible and fully irreducible are identical notions in this subgroup.

Of central importance to the theory of relative outer automorphisms is the Handel–Mosher

Subgroup Decomposition Theorem.

Theorem 1.1 ([18, Theorem D]). Given a finitely generated subgroup H < IAN(Z/3) and a maximal
H–invariant filtration ∅ � F0 @ F1 @ · · · @ Fk � {[FN]}, for each i � 1, . . . , k such that Fi−1 @ Fi is a
multi-edge extension, there is an element ϕi ∈ H that is irreducible with respect to Fi−1 @ Fi .

Remark 1.2. In fact, a single ϕ ∈ H satisfies the conclusion of the theorem [10, Theorem 6.6].

We denote the stabilizer in Out(FN) of a free factor system Fof FN by Out(FN ; F). If F� {[A]},
we usually write Out(FN ; A) for this subgroup.

Suppose A < FN is a free factor and ϕ ∈ Out(FN ; A). Then there is an automorphism Φ ∈ ϕ
such that Φ(A) � A. The outer automorphism class of the restriction of Φ to A is the same

for any representative of ϕ that fixes A, we denote the resulting outer automorphism by ϕ
��
A ∈

Out(A). Moreover, the assignment ϕ 7→ ϕ
��
A is a homomorphism from Out(FN ; A) to Out(A) [18,

Part I, Fact 1.4].

If ϕ ∈ Out(FN) fixes each element of a free factor system F � {[A1], . . . , [Ak]} then we write

ϕ
��
F

to refer to the collection of maps

{
ϕ
��
A1
, . . . , ϕ

��
Ak

}
. This happens in particular when ϕ ∈

IAN(Z/3) ∩Out(FN ; F). If we say ϕ
��
F
has some property (e.g. is atoroidal), we mean each of the

maps ϕ
��
Ai has this property.

1.4. Train tracks and CTs. Train track maps are a type of graph map with certain useful features

that were first introduced by Bestvina–Handel in order to study the dynamics of irreducible outer

automorphisms of FN . Not every outer automorphism is represented by a train track map, but

they can be represented by a generalization called a relative train track map [6]. Since their original

construction, train track maps have been improved upon giving finer control over certain aspects

of the maps. For our purpose, we will work with a completely split train track map (CT) introduced
by Feighn–Handel [15]. The definition of a CT is rather long and technical and so after giving

the definition of a relative train track map below (Definition 1.3), we will only state the relevant

properties of a CT needed in the sequel (Lemma 1.4). We also quote the key result that after

passing to a power, every outer automorphism can be represented by a CT (Theorem 1.5).

A graph map f : G→ G induces a derivative map D f : EG→ EG on the set of oriented edges by

setting D f (e) equal to the first edge in the edge path f (e). A turn in G is an unordered pair (e1 , e2)
of oriented edges in G where o(e1) � o(e2). A turn (e1 , e2) is called degenerate if e1 � e2, otherwise

it is called non-degenerate. A turn (e1 , e2) is called illegal if its image

(
(D f )k(e1), (D f )k(e2)

)
under

an iterate of the derivative map is degenerate for some k ≥ 1, otherwise it is called legal. An edge

path e1e2 . . . en is called legal if each turn (e−1

i , ei+1) for i � 1, . . . , n − 1 is legal.

Suppose ∅ � G0 ⊂ G1 ⊂ · · · ⊂ G` � G is a filtration of the map f . We say that a turn (e1 , e2) is
contained in the stratum Hr if both edges e1 , e2 are in EHr . An edge path γ is called r–legal, if every
turn in γ that is contained in Hr is legal. A connecting path for Hr is a nontrivial reduced path γ in

Gr−1 whose endpoints are in Gr−1 ∩Hr ; it is taken if it is the subpath of [ f k(e)] for some edge e that

belongs to an irreducible stratum.
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Definition 1.3. A topological graph map f : G → G equipped with a filtration ∅ � G0 ⊂ G1 ⊂
· · · ⊂ G` � G is called a relative train track map if for each exponentially growing stratum Hr the

following hold:

(1) for each edge e ∈ EHr , (D f )k(e) ∈ EHr for all k ≥ 1;

(2) for each connecting path γ for Hr , the path [ f (γ)] is also a connecting path for Hr ; and

(3) if γ is r–legal, then so is [ f (γ)].

The notion of a geometric stratum for a relative train track map was introduced and studied by

Bestvina–Feighn–Handel [5], and studied extensively by Handel–Mosher in the CT setting [18].

Suppose ∅ � G0 ⊂ G1 ⊂ · · · ⊂ G` � G is a filtration for a relative train track map f : G → G. A

stratum Hr is called geometric if there exist a compact surface S with k + 1 boundary components

α0 , α1 , . . . , αk and a pseudo-Anosov homeomorphism h : S→ S with the following properties.

• The homeomorphism h extends to a homotopy equivalence h : S ∪Gr−1 → S ∪Gr−1 where

S is attached to Gr−1 by attaching the boundary components α1 , . . . , αk to k circuits in Gr−1.

• There is an embeddingGr ↪→ S∪Gr−1 that restricts to the identity onGr−1 andadeformation

retraction d : S ∪ Gr−1 → Gr such that f d ' dh.
We can extend this notion to subgroups of Out(FN). Suppose H is a subgroup of Out(FN) and

F0 @ F1 is a multi-edge extension invariant under H. We say the extension is geometric if for each
ϕ ∈ H there is a relative train track map f : G → G with a filtration ∅ � G0 ⊂ G1 ⊂ · · · ⊂ G` � G
realizing the filtration for FN such that the stratum Hr is geometric where F0 � F(Gr−1) and
F1 � F(Gr), without the assumption that the associated homeomorphism h : S → S is pseudo-

Anosov. We call S a geometric model for ϕ.
The following lemma summarizes the key additional properties of CT maps that we will use.

To state the first of these properties, we need the following definition. A path ρ in G is a Nielsen
path if [ f k(ρ)] � ρ for some k ≥ 1; it is an indivisible Nielsen path if further it does not split as the

concatenation of two non-trivial Nielsen paths.

Lemma 1.4. Suppose f : G→ G is a CT map with filtration ∅ � G0 ⊂ G1 ⊂ · · · ⊂ G` � G.
(1) If Hr is a non-geometric EG stratum, then there does not exist a closed Nielsen path ρ ⊂ Gr that

intersects Hr nontrivially ([15, Corollary 4.19 eg(ii)] and [18, Part I, Fact 1.42 (1b)]).
(2) If Hr is an NEG stratum, then Hr consists of a single edge e. Furthermore, either e is fixed, or

f (e) � eγ where γ is a nontrivial cyclically reduced path in Gr−1 ([15, Lemma 4.21]).

The edge e of an NEG stratum is called a fixed edge if f (e) � e, a linear edge if f (e) � eρ where ρ
is a nontrivial Nielsen path, and a superlinear edge otherwise. We conclude this section by stating

the theorem providing the existence of CT maps.

Theorem 1.5 ([15, Theorem 4.28, Lemma 4.42]). There exist a constant M � M(N) ≥ 1 such that for
any ϕ ∈ Out(FN), and any nested sequence C of ϕM-invariant free factor systems, there exists a CT map
f : G→ G that represents ϕM and realizes C.

2. Geodesic currents

The way we demonstrate that an element of Out(FN) is atoroidal is by showing that it acts on

a certain space without a periodic orbit. The space we consider is the space of geodesic currents,

which naturally contains the set of conjugacy classes of nontrivial elements of FN . We describe

this space and its key features in this section. More details can be found in [21].

Let ∂FN denote the Gromov boundary of FN . The double boundary of FN is defined to be the set:

∂2FN � (∂FN × ∂FN \ ∆)/∼
7



where ∼ is the flip relation (x , y) ∼ (y , x), and ∆ is the diagonal. This set is naturally identified

with the set of unoriented bi-infinite geodesics in R̃N , the universal cover of RN . The group FN
acts on itself by left multiplication, which induces an action of FN on both ∂FN and ∂2FN .

A geodesic current on FN is a non-negative Radon measure on ∂2FN that is invariant under the

action of FN . The space of geodesic currents on FN , denoted by Curr(FN), is equipped with the

weak-* topology. We give more specifics about the topology later.

The following construction is the most natural example of a geodesic current. Let g ∈ FN be a

nontrivial element that is not a proper power, i.e., g , hk
for some h ∈ FN , and k > 1. Let (g−∞ , g∞)

be the unoriented bi-infinite geodesic labeled by g’s. For any such g we define the counting current
ηg ∈ Curr(FN) as follows. If S ⊂ ∂2FN is a Borel subset we set:

ηg(S) � #

��S ∩ FN(g−∞ , g∞)
�� .

This definition does not depend on the representative of the conjugacy class [g] of g, so we will

use η[g] and ηg interchangeably. For an arbitrary g, we write g � hk
where h is not a proper power

and define ηg � kηh . The set of scalar multiples of all counting currents are called rational currents.
An important fact about rational currents is that they form a dense subset of Curr(FN) [7, 21, 25]

The group Aut(FN) acts by homeomorphisms on Curr(FN) as follows. An automorphism

Φ ∈ Aut(FN), extends to a homeomorphism of both ∂FN and ∂2FN which we still denote by Φ, and

for µ ∈ Curr(Fn)we define:

(Φµ)(S) � µ(Φ−1(S))
for any Borel subset S of ∂2FN . The FN–invariance of the measure implies that the group Inn(FN)
of inner automorphisms acts trivially, hence we obtain an action of Out(FN) � Aut(FN)/Inn(FN)
on Curr(FN). On the level of conjugacy classes one can easily verify that ϕη[g] � ηϕ[g].

The space PCurr(FN) of projectivized geodesic currents is defined as the quotient of Curr(FN)− {0}
where two currents are deemed equivalent if they are positive scalar multiples of each other. The

space PCurr(FN) endowed with the quotient topology is compact [7, 21]. Furthermore, setting

ϕ[µ] � [ϕµ] gives a well defined action of Out(FN) on PCurr(FN).
Wewill now givemore specifics about the topology on Curr(FN). Let m : RN → G be amarking.

Lifting m to the universal covers, we get a quasi-isometry m̃ : R̃N → G̃ and a homeomorphism

m̃ : ∂FN → ∂G̃. Given a reduced edge path γ̃ in
˜G the cylinder set of γ̃ is defined as

Cylm(γ̃) �
{
(ξ1 , ξ2) ∈ ∂2FN | γ̃ ⊂ [m̃(ξ1), m̃(ξ2)]

}
,

where [m̃(ξ1), m̃(ξ2)] is the bi-infinite geodesic from m̃(ξ1) to m̃(ξ2) in ˜G and containment is for

either orientation.

Let γ be a reduced edge path in G and let γ̃ be a lift of γ to G̃. We define the number of occurrences
of γ in µ as

〈γ, µ〉m � µ(Cylm(γ̃)).
As µ is invariant under the action of FN , the quantity µ(Cylm(γ̃)) does not depend on the choice

of the lift γ̃ of γ. Hence, 〈γ, µ〉m is well defined. The marked graph will always be clear from the

context and in what follows we drop the letter m from the notation and use Cyl(γ̃) and 〈γ, µ〉.
Cylinder sets form a subbasis for the topology of the double boundary ∂2FN and play an

important role in the topology of currents. In [21], it was shown that a geodesic current is uniquely

determined by the set of values {〈γ, µ〉}γ as γ varies over the set of all reduced edge paths in G.

Furthermore, defining the simplicial length of a current µ to be |µ| � ∑
e∈E+G〈e , µ〉 we have the

following characterization of limits in PCurr(FN).
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Lemma 2.1 ([21, Lemma 3.5]). Suppose ([µn]) ⊂ PCurr(FN) is a sequence and [µ] ∈ PCurr(FN). Then

lim

n→∞
[µn] � [µ] if and only if lim

n→∞

〈γ, µn〉
|µn |

�
〈γ, µ〉
|µ|

for each reduced edge path γ in G.

The value |µ| does depend on the marked graph, but as before, the marked graph will always be

clear from the context and so we omit it from the notation. It follows immediately from Lemma 2.1

that the occurrence function µ 7→ 〈γ, µ〉 and the simplicial length function µ 7→ |µ| are continuous
and linear on Curr(FN) [21, Proposition 5.9].

Given a free factor A < FN , let ι : A → FN be the inclusion map. There is a canonical A–

equivariant embedding ∂A ⊂ ∂FN which induces an A–equivariant embedding ∂2A ⊂ ∂2FN .

Let Curr(A) and Curr(FN) be the corresponding spaces of currents. There is a natural inclusion

ιA : Curr(A) → Curr(FN) defined by pushing the measure forward via the FN action such that for

each g ∈ A we have ιA(ηg) � ηι(g), see [21, Proposition-Definition 12.1].

3. Pushing past multi-edge extensions

As stated in the introduction, the strategy for proof of Theorem A is to work from the bottom

up using a maximal H–invariant filtration ∅ � F0 @ F1 @ · · · @ Fk � {[FN]}. Assuming that there

is an element ϕ ∈ Hsuch that ϕ
��
Fi−1

is atoroidal, we either find a nontrivial element g ∈ FN whose

conjugacy class is fixed by a finite index subgroup of H, or in the absence of such an element, we

produce an element ϕ̂ ∈ H such that ϕ̂
��
Fi

is atoroidal.

There are two cases depending on whether the extension Fi−1 @ Fi is multi-edge or single-edge.

In this section we deal with the multi-edge case; the single-edge case takes up Section 5.

The multi-edge case follows from recent work of Handel–Mosher and Guirardel–Horbez. We

collect these results here and show how they apply to this setting.

Theorem 3.1. SupposeH< IAN(Z/3) < Out(FN). LetF0 @ F1 be anH–invariant multi-edge extension,
and assume that H contains an element which is fully irreducible with respect to the extension F0 @ F1.
Then one of the following holds.

(1) H contains an element ψ which is fully irreducible and non-geometric relative to F0 @ F1([18,
Part IV, Proposition 2.2 and 2.4]); or

(2) there is a common geometric model for all ϕ ∈ H and hence every element of Hfixes the conjugacy
class corresponding to a boundary curve ([18, Part IV, Theorem J]).

When F0 � ∅, the above theorem was originally proved by the second author [30]. The general

case above is also proved by Guirardel–Horbez using the action of the relative outer automor-

phism group on a δ–hyperbolic complex which is a relative version of Dowdall–Taylor’s co-surface

graph [13]. The existence and relevant properties of this complex, which we will also need, is the

following.

Theorem 3.2. [16, Theorem 4.2] Suppose F @ {[FN]} is a multi-edge extension. There exist a δ–
hyperbolic graph ZFwith an isometric Out(FN ; F) action so that an element ϕ ∈ Out(FN ; F) acts as a
hyperbolic isometry of ZF if and only if ϕ is fully irreducible and non-geometric relative to F@ {[FN]}.

As a consequence of Theorem 3.1, when considering the multi-edge extension Fi−1 @ Fi which

is part of a maximal H–invariant filtration, if there does not exist a nontrivial element g ∈ FN
whose conjugacy class is in Fi and is fixed by a finite index subgroup of H, then there is a fully

irreducible and non-geometric element ϕ relative to Fi−1 @ Fi . Assuming ϕ
��
Fi−1

is atoroidal, so is

ϕ
��
Fi

as the next lemma states, allowing us to push past a multi-edge extension.

9



Lemma 3.3. Suppose ϕ ∈ Out(FN) is fully irreducible and non-geometric with respect to the extension
F0 @ F1 and the restriction of ϕ to F0 is atoroidal. Then the restriction of ϕ to F1 is atoroidal too.

Proof. This is a straightforward consequence of Lemma 1.4(1). Indeed, let f : G→ G be a CT map

that represents ϕM
and realizes C� (F0 ,F1), where M is the constant from Theorem 1.5. Assume

M is so that ϕM ∈ IAN(Z/3). Let Hr be the stratum corresponding to the extension F0 @ F1, i.e.,

F0 � F(Gr−1), F1 � F(Gr) and Hr � Gr − Gr−1.

Any ϕ–periodic conjugacy class contained in F1 is represented by a closed Nielsen path ρ ⊂ Gr .

As Hr is a non-geometric EG stratum, Lemma 1.4(1) implies that ρ ⊂ Gr−1, which contradicts the

assumption that ϕ
��
F0

is atoroidal. �

Combining the Handel–Mosher Subgroup Decomposition Theorem (Theorem 1.1) with The-

orems 3.1 and 3.2, we get the following corollary which will be required when pushing past

single-edge extensions.

Corollary 3.4. Suppose H< IAN(Z/3) < Out(FN). Let
∅ � F0 @ F1 @ · · · @ Fk � {[FN]}

be a maximal H–invariant filtration by free factor systems such that each multi-edge extension is non-
geometric. Then there exists an element ϕ ∈ H such that for each i � 1, . . . , k where Fi−1 @ Fi is a
multi-edge extension, ϕ is irreducible and non-geometric with respect to Fi−1 @ Fi .

Proof. The proof is the same as the proof of [10, Theorem 6.6], as commented in Remark 1.2.

The key point is that Theorems 1.1, 3.1 and 3.2 provide for the existence of δ–hyperbolic spaces

corresponding to each multi-edge extension and for each an element which acts as a hyperbolic

isometry. The main theorem in [10] shows that under these hypotheses, there is a single element

in Hwhich acts as a hyperbolic isometry in each. Applying Theorem 3.2 again completes the

proof. �

4. Dynamics on single-edge extensions

In this section we analyze the dynamics of outer automorphisms that preserve a single-edge

extension of free factor systems F0 @ F1. The main result of this section is that in the most

interesting case of a handle extension, if ϕ preserves the extension and acts as an atoroidal element

on FN−1, then ϕ acts on the space of currents on FN with generalized north-south dynamics

(Theorem 4.15).

4.1. Almost atoroidal elements. To begin, we characterize outer automorphisms preserving a

single-edge extension F0 @ F1 whose restriction to F0 is atoroidal.

Proposition 4.1. Suppose F0 @ F1 is a single-edge extension of free factor systems that is invariant under
ϕ ∈ IAN(Z/3). If ϕ

��
F0

is atoroidal, then one of the following holds.

(1) The restriction ϕ
��
F1

is atoroidal.
(2) There exists a nontrivial g ∈ FN such that g, its inverse, and its iterates are the only nontrivial

conjugacy classes in F1 fixed by ϕ
��
F1

. Furthermore, there is some [A] ∈ F0 such that either:
• F1 � F0 ∪ {[〈g〉]} (circle extension); or
• F1 �

(
F0 − {[A]}

)
∪{[A ∗ 〈g〉]} (handle extension).

Proof. Let f : G → G be a CT that represents ϕM
and realizes C � (F0 ,F1), where M is the

constant from Theorem 1.5. Let Hr be the NEG stratum corresponding to the extension F0 @ F1,

i.e., F0 � F(Gr−1), F1 � F(Gr) and Hr � Gr − Gr−1. By Lemma 1.4(2), Hr consists of a single edge

e.
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If F0 @ F1 is a circle extension, then the second statement of the proposition holds. Else, if

F0 @ F1 is a barbell extension, then ϕ
��
F1

is atoroidal and so the first statement of the proposition

holds. Hence we assume that F0 @ F1 is a handle extension. Let [A] ∈ F0 correspond to the

component of Gr−1 upon which e is attached.

First, suppose that e is a linear edge, i.e., f (e) � eρ where ρ is a nontrivial closed Nielsen path

in Gr−1. Then the conjugacy class corresponding to ρ is fixed by ϕ and is in F0, contradicting the

assumption ϕ
��
F0

is atoroidal. Hence this case does not occur.

Next, suppose that e is a fixed edge. If o(e) � t(e), we claim that the conjugacy class g that

corresponds to the loop e is the only fixed conjugacy class up to inversion and taking powers.

Thus the second statement of the proposition holds. Indeed, any other conjugacy class [h] in F1 is

represented by a cyclically reduced loop of the form ea1α1ea2 . . . αk where the αi’s are reduced loops

in Gr−1 based at the common vertex o(e) � t(e) and the ai’s are non-zero integers. If ϕMp[h] � [h]
for some p ≥ 1, then [ f p(ea1α1ea2 . . . αk)] � σea1α1ea2 . . . αkσ−1

for some reduced edge path σ (note,
the image path is reduced except possibly at σ · ea1

or αk · σ−1
). Since f (e) � e and f preserves

Gr−1, f p
must permute the αi’s (up to homotopy rel endpoints). Hence some power of f fixes each

αi which is a contradiction as the restriction of ϕ to F0 is atoroidal.

If o(e) , t(e), we claim that there canbe atmost onefixed conjugacy class inF1 up to inversion and

taking powers. Thus the second statement of the proposition holds. Indeed, suppose h1 , h2 ∈ FN
are not proper powers, [h1] and [h2] are in F1, and are fixed by ϕ. As the restriction of ϕ to F0 is

atoroidal, we have that [h1] is represented by a cyclically reduced loop ea1α1ea2 . . . αk where the

αi’s are reduced paths in Gr−1 and each ai ∈ {−1, 1}. Similarly, [h2] is represented by a cyclically

reduced loop eb1β1eb2 . . . β` where again the βi’s are reduced paths in Gr−1 and each bi ∈ {−1, 1}.
As in the previous case of a loop, some power of f fixes each αi and βi (up to homotopy rel

endpoints). If there is some i such that ai , ai+1, then the path αi is closed and represents a

conjugacy class in F0 which is ϕ–periodic, contradicting the assumption that the restriction of ϕ
to F0 is atoroidal. Similarly for the bi’s. Thus, after possibly replacing h1 or h2 by their inverse, we

have that each ai and bi equals 1. If there exist i , j such that αi , α j , then the nontrivial closed

loop αiα−1

j is fixed by this power of f and contained in Gr−1, again contradicting the assumption

that the restriction of ϕ to F0 is atoroidal. Thus the αi’s are all the same path α and since h1 is not

a proper power, we have that [h1] is represented by the cyclically reduced path eα. Similarly [h2]
is represented by the cyclically reduced path eβ. Finally, if α , β, then the nontrivial closed loop

αβ−1
is fixed by a power of f , again contradicting the assumption that the restriction of ϕ to F0 is

atoroidal. Hence [h1] � [h2].
Lastly, in the remaining case that e is superlinear, there is no Nielsen path that crosses e [18,

Part 1, Fact 1.43], hence the restriction of ϕ to F1 is atoroidal as well. Thus the first statement of

the proposition holds.

In all cases, we see that ϕ has atmost one fixed conjugacy class up to taking powers and inversion

which proves the first part of the theorem. The last assertion for the second statement follows from

the fact that the path representing a possible fixed g crosses the edge e exactly once, see for example

[5, Corollary 3.2.2]. �

4.2. North-south dynamics for atoroidal elements. The second author recently proved that

atoroidal elements of Out(FN) act on PCurr(FN) with north-south dynamics in the following

sense.

Theorem 4.2 ([31, Theorem 1.4]). Let ϕ ∈ Out(FN) be an atoroidal outer automorphism of a free group
of rank N ≥ 3. There are simplices ∆+, ∆− in PCurr(FN) such that ϕ acts on PCurr(FN) with north-south
dynamics from ∆− to ∆+. Specifically, given open neighborhoods U of ∆+ and V of ∆− there exists M > 0

such that ϕn(PCurr(FN) − V) ⊂ U, and ϕ−n(PCurr(FN) −U) ⊂ V for all n ≥ M.
11



We also need the following statement regarding the behavior of the length of a current under

iteration of ϕ. In this statement, we assume ϕ ∈ Out(FN) satisfies the hypotheses of Theorem 4.2

and ∆− is the ϕ–invariant simplex in PCurr(FN) appearing in the statement of that theorem.

Lemma 4.3 (cf. [23, Corollary 4.13]). For each C > 0 and neighborhood V of ∆− there is a constant
M > 0 such that if [µ] < V , then |ϕnµ| ≥ C |µ| for all n ≥ M.

A similar statement appears as Lemma 4.16. The proof given there directly adapts to prove this

statement.

4.3. Completely split goodness of paths and currents. To deal with single-edge extensions, we

need similar statements for an element of Out(FN) that restricts to an atoroidal element on a co-
rank 1 free factor of FN , i.e., a free factor A < FN for which there exists a nontrivial g ∈ FN such

that FN � A ∗ 〈g〉. This is the purpose of this subsection and the next where we describe the

necessary tools to prove Theorem 4.15. The majority of the work in the next two section modifies

the constructions and argument in [31] to deal with the free factor 〈g〉. A casual reader can review

the main statements corresponding to the two above, Theorem 4.15 and Lemma 4.16, and skip

ahead to Section 5.

Standing assumption 4.4. Suppose A < FN is a co-rank 1 free factor and ϕ ∈ IAN(Z/3) ∩Out(FN ; A)
is such that ϕ

��
A is atoroidal. Let ∆+ and ∆− be the inclusion to PCurr(FN) of the ϕ–invariant simplices in

PCurr(A) from Theorem 4.2 for ϕ
��
A. Assume ϕ is not atoroidal and let [g] be the fixed conjugacy class in

FN given by Proposition 4.1(2). Let

∆̂− � {[tηg + (1 − t)µ−] | [µ−] ∈ ∆− , t ∈ [0, 1]}
and

∆̂+ � {[tηg + (1 − t)µ+] | [µ+] ∈ ∆+ , t ∈ [0, 1]}.

Throughout the rest of this section and the next, we will further assume the element ϕ is

represented by a CT map f : G → G in which the fixed conjugacy class [g] is represented by a

loop edge e in G which is fixed by f . The complement of the edge e in G is denoted G′. This

assumption is not a restriction (upon replacing ϕ by a sufficient power to ensure some CT). Indeed,

if in the proof of Proposition 4.1 the edge e is a loop edgewe are done. Otherwise, the conclusion of

Proposition 4.1 says that [g] is a free factor sowe can take aCTmap f ′ : G′→ G′ that representsϕ
��
A

and let G � G′ ∨ e where the wedge point is at an f ′-fixed vertex and e is a loop edge representing

[g]. There is an obvious extension to a map f : G → G representing ϕ ∈ Out(FN) that is a CT

map. Existence of a fixed vertex is guaranteed by the properties of CT’s, see [15, Definition 3.18

and Lemma 3.19].

A decomposition of a path γ in G into subpaths γ � γ1 · γ2 · . . . · γn is called a splitting if for all

k ≥ 0 we have

[ f k(γ)] � [ f k(γ1)][ f k(γ2)] . . . [ f k(γn)].
In other words, any cancellation takes place within the images of the γi’s. We use the “·” notation
for splittings. A path γ is said to be completely split if it has a splitting γ1 ·γ2 · . . . ·γn where each γi is

either an edge in an irreducible stratum, an indivisible Nielsen path or amaximal taken connecting

path in a zero stratum. These type of subpaths are called splitting units. We refer reader to [15] for

complete details and note that the assumption on ϕ above guarantees that there are no exceptional

paths. Of importance is that if γ � γ1 · γ2 · . . . · γn is a complete splitting, then [ f (γ)] also has a

complete splitting where the units refine [ f (γ)] � [ f (γ1)] · [ f (γ2)] · . . . · [ f (γn)] [15, Lemma 4.6]. We

say that a splitting unit σ is expanding if |[ f k(σ)]| → ∞ as k →∞. Recall | � | denotes the simplicial

length of a path.
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We next need to introduce a notion of goodness tailored to the setting of CT maps. Goodness

appears in several places in the literature [4, 25, 29]. Intuitively, the closer the goodness of a path

is to 1, the more we understand the qualitative behavior of its forward images. In the previous

settings, it is defined using legal subpaths, in the current setting, completely split subpaths are the

relevant piece to keep track of.

Definition 4.5. For an edge path γ in G, amaximal splitting is a splitting γ � β0 · α1 · β1 · . . . · αn · βn
where each αi has a complete splitting, βi is nontrivial for i � 1, . . . , n−1 and

∑n
i�1
|αi | ismaximized.

Using a maximal splitting, we define the completely split goodness of γ as:

g(γ) � 1

|γ |

n∑
i�1

|αi |.

If γ is a cyclically reduced circuit in G, set g(γ) to be the maximum of g(γ′) over all cyclic

permutations of γ. For any conjugacy class h ∈ FN , let γh be the unique cyclically reduced

circuit in G that represents [h]. We define the completely split goodness of a conjugacy class [h] as
g([h]) � g(γh). It is not clear that g can extend in a continuous way to Curr(FN). What we can do is

to define a continuous function g : Curr(FN) → R that agrees with g on completely split circuits

and provides a lower bound on g in general. The first ingredient is the bounded cancellation

lemma.

Lemma 4.6. [11] Let f : G → G be a graph map. There exists a constant C f such that for any reduced
path γ � γ1γ2 in G one has

|[ f (γ)]| ≥ |[ f (γ1)]| + |[ f (γ2)]| − 2C f .

Let C0 be the maximum length of a Nielsen path or a taken connecting path in a zero stratum in

G′. Finiteness of C0 follows as ϕ
��
A is atoroidal and zero strata are contractible. This same C0 also

works for f k
for all k ≥ 1. We now replace the CT map f with a suitable power, but continue to

use f , so that for each expanding splitting unit σ, we have

��[ f (σ)]�� ≥ 3(2C0 + 1) |σ |. Let C f be the

bounded cancellation constant for this new f and C � max{C0 + 1, C f }.

Proposition 4.7. Under the standing assumption 4.4, the following hold:
(1) If a path γ in G′ is completely split and |γ | ≥ C0 + 1, then:

sum of lengths of expanding splitting units
|γ | ≥ 1

2C0 + 1

.

(2) If a path γ in G′ is completely split and |γ | ≥ C0 + 1, then:

|[ f (γ))]| ≥ 3|γ |.

(3) Let γ be any path in G and suppose γ0 · γ1 · γ2 is a subpath of γ where each γi has a complete
splitting. If |γ0 |, |γ2 | ≥ C then γ has a splitting γ � γ′ · γ1 · γ′′.

Proof. The proof of (1) is similar to that of [31, Proposition 3.9]. Properties of CT’s imply that γ
has a splitting γ � β0 · α1 · β1 · . . . · αn · βn where each αi has a complete splitting into edges in EG

strata (in particular into expanding splitting units) and each β j is either a Nielsen path or a taken

connecting path in a zero stratum. Since |γ | ≥ C0 we must have n > 0. As |αi | ≥ 1 for all i and
|β j | ≤ C0 for all j we have:

|γ |∑n
i�1
|αi |

� 1 +

∑n+1

j�0
|b j |∑n

i�1
|αi |
≤ 1 +

(n + 1)C0

n
≤ 2C0 + 1.
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Therefore:

sum of lengths of expanding splitting units
|γ | ≥

∑n
i�1
|αi |
|γ | ≥ 1

2C0 + 1

.

We get (2) by noting that |[ f (αi)]| ≥ 3(2C0 + 1)|αi | for all i and so by (1):

|[ f (γ)]| ≥
n∑

i�1

|[ f (αi)| ≥ 3(2C0 + 1)
n∑

i�1

|αi | ≥ 3|γ |.

For (3) we first observe that by (2), we have |[ f (γ0)]|, |[ f (γ2)]| ≥ 3C ≥ C f + C0 + C. Decompose

γ as a concatenation γ � γ′
0
γ0γ1γ2γ′

2
. Applying Lemma 4.6 to γ′ � γ′

0
γ0 we get that at most

C f edges of [ f (γ′
0
)] cancels with [ f (γ0)] and therefore, the terminal segment of length C + C0

in [ f (γ0)] remains in [ f (γ′)]. As [ f (γ0)] is completely split, we see that [ f (γ′)] � γ′′
0
γ̂0 where

γ̂0 ⊆ [ f (γ0)] is completely split and |γ̂0 | ≥ C. Likewise for γ′′ � γ2γ′
2
we see that [ f (γ′′)] � γ̂2γ′′

2

where γ̂2 ⊆ [ f (γ2)] is completely split and |γ̂2 | ≥ C.

As γ0 · γ1 · γ2 is a splitting, we have [ f (γ)] � [ f (γ′)][ f (γ1)][ f (γ′′)].
Since the path γ̂0 · f (γ1) · γ̂2 is a subpath of [ f (γ)] satisfying the same hypotheses as γ0 · γ1 · γ2

did for γ, we can repeatedly apply this argument to get [ f k(γ)] � [ f k(γ′)][ f k(γ1)][ f k(γ′′)] for all
k ≥ 1 and so γ � γ′ · γ1 · γ′′ is a splitting. �

Let Pcs denote the set of paths in G that have a complete splitting comprised of exactly 2C + 1

splitting units. Given γ ∈ Pcs we have γ � σ1 · σ2 · . . . · σ2C+1 where each σi is a splitting unit

and we define γ̌ � σC+1, i.e., the middle splitting unit. It is possible that distinct paths γ, γ′ ∈ Pcs

could be nested, i.e., γ′ ( γ. For instance, if the first or last unit in γ is either an indivisible Nielsen

path or a taken connecting path in a zero stratum then it is possible that γ has a completely split

subpath γ′ with 2C + 1 terms where the first and/or last terms are either edges in the indivisible

Nielsen path or a smaller taken connecting zero path. For such γ̌ � γ̌′. We need to keep track of

such behavior and so define:

Pmin

cs
� {γ ∈ Pcs | �γ′ ∈ Pcs where γ ( γ′ and γ̌ � γ̌′}.

We can now define a version of completely split goodness for currents.

Definition 4.8. For any non-zero µ ∈ Curr(FN) define the completely split goodness of µ by:

g(µ) � 1

|µ|
∑

γ∈Pmin

cs

〈γ, µ〉|γ̌ |. (4.1)

Observe that g descends to a well-defined function g : PCurr(FN) → R. The important proper-

ties of g are summarized in the following lemma.

Lemma 4.9. The map g : Curr(FN) − {0} → R is continuous. Further for any rational current ηh :
(1) g(ηh) � 1 if ηh is represented by a completely split circuit; and
(2) g(γh) ≥ g(ηh) where γh is the unique reduced circuit in G that represents [h].

Proof. The continuity is clear as it is defined using linear combination of continuous functions

(Lemma 2.1).

For the first assertion, suppose h is represented by a completely split cyclically reduced circuit

γ � σ1 · σ2 · . . . · σn . For each i, the path:

γi � σi−C · · · · · σi−1 · σi · σi+1 · · · · · σi+C

where the indices are taken modulo n is in Pcs and has γ̌i � σi . Thus each splitting unit σi in γ is

the middle term of completely split edge path of length 2C+1. The minimal such path contributes

to the right-hand side of (4.1) the number of edges of σi .
14



The second assertion follows from Proposition 4.7(3). �

4.4. Incorporating north-south dynamics from lower stratum. We need to work with the inverse

outer automorphism ϕ−1
as well. We will denote the CT map for ϕ by f+ : G+ → G+. As in

Section 4.3, we assume that there is an edge e+ in G+ representing the fixed conjugacy class [g] and
we will denote the complement of e+ in G+ by G′+. The corresponding completely split goodness

function is denoted by g+. For ϕ−1
, we denote the corresponding objects by f− : G− → G−, e−,

G′− and g−. Let us denote the total length of subpaths of γ that lie in G′+ by |γ |′, and by abuse of

notation we denote the corresponding length functions on G− and G′− with | � | and | � |′ as well, their

use will be clear from context.

Notice that any path γ in G+ has a splitting γ � α0 · ek1

+ · α1 · . . . · ekm
+ · αm where each αi is a closed

path in G′+ which is nontrivial for i � 1, . . . ,m − 1 and each ki is a nonzero integer. This follows as

f+(e+) � e+ and f+(G′) ⊆ G′. If γ is not a power of e+ we define:

g′+(γ) �
∑m

i�0
|αi |g+(αi)∑m
i�0
|αi |

.

In other words, we are measuring the proportion of γ in G′ that is completely split. There is a

similar discussion for paths in G− and we define g′− analogously.
Given h ∈ FN , we let γ+h and γ−h respectively denote the unique cyclically reduced circuits in G+

and G− respectively that represent [h]. The following proposition summarizes the key properties

of g′+ and how it will be used to detect how close a current is to the attracting simplices.

Proposition 4.10. Under the standing assumption 4.4, the following hold for all h ∈ FN that is not
conjugate to a power of g.

(1) For any open neighborhood U+ of ∆+ there exists a 0 < δ < 1 and M > 0 such that ϕn[ηh] ∈ U+

for all n ≥ M if:

g′+(γ+h )
|γ+h |

′

|γ+h |
> δ.

(2) For any ε > 0 and L ≥ 0 there exists a 0 < δ < 1 and M > 0 such that for each n ≥ M there is a
[µ] ∈ ∆+ with: ���� 〈α, [ f n

+ (γ+h )]〉
|[ f n

+ (γ+h )]|′
−
〈α, µ〉
|µ|

���� < ε
for every reduced path α in G′+ of length at most L if g′+(γ+h ) > δ.

Proof. Both of these statements can be proved using arguments almost identical to [24, Lemma 6.1]

(see also [31, Lemma 3.17]).

For (1), the lower bound on this ratio implies thatmost of the length of γ+h comes from completely

split subpaths in G′+. The argument in [24, Lemma 6.1] converts this notion to having powers that

are close to currents in ∆+.

For (2), the lower bound on g′+ implies that most of the length of γ+h contained in G′+ comes from

completely split subpaths in G′+. The argument in [24, Lemma 6.1] converts this notion to having

powers that almost agree with currents in ∆+ on most subpaths of G′+. �

There of course are analogous statements for g′−.

Lemma 4.11. Under the standing assumption 4.4, given 0 < δ < 1 and K ≥ 0, there exists an M > 0 such
that for all h ∈ FN that is not conjugate to a power of g either:

g′+([ f n
+ (γ+h )]) > δ and |[ f

n
+ (γ+h )]|

′ ≥ K |γ+h |
′
; or

g′−([ f n
− (γ−h )]) > δ and |[ f

n
− (γ−h )]|

′ ≥ K |γ−h |
′

15



for all n ≥ M.

Proof. Since the restrictions of f+ to G′+ and f− to G′− are atoroidal, the result essentially follows

from [31]. Indeed, writing:

γ+h � α0 · ek1

+ · α1 · . . . · ekm
+ · αm

γ−h � β0 · ek1

− · β1 · . . . · ekm
− · βm

we have that [31, Lemma 3.19] provides the existence of an M0 such that for each pair {αi , βi} we

have that one of g+([ f M0

+ (αi)]) or g−([ f M0− (βi)]) is at least
1

2
. Let J ⊆ {0, 1, . . . ,m} be the subset

where the first alternative occurs. Let L ≥ 1 be such that
1

L |[ f
M0

+ (αi)]| ≤ |[ f M0− (βi)]| ≤ L |[ f M0

+ (αi)]|
for each i.

Suppose that

∑
i∈ J |[ f M0

+ (αi)]| ≥ 1

2

∑m
i�0
|[ f M0

+ (αi)]|. Then:

g′+([ f M0

+ (γ+h )]) �
∑m

i�0
|[ f M0

+ (αi)]|g+([ f M0

+ (αi)])∑m
i�0
|[ f M0

+ (αi)]|

≥ 1

2

∑
i∈ J |[ f M0

+ (αi)]|g+([ f M0

+ (αi)])∑
i∈ J |[ f M0

+ (αi)]|

≥ 1

4

.

Otherwise we have

∑
i<J |[ f M0

+ (αi)]| ≥ 1

2

∑m
i�0
|[ f M0

+ (αi)]| and so:∑
i<J

|[ f M0

− (βi)]| ≥
1

L

∑
i<J

|[ f M0

+ (αi)]|

≥ 1

2L

m∑
i�0

|[ f M0

+ (αi)]| ≥
1

2L2

m∑
i�0

|[ f M0

− (βi)]|.

A similar calculation in this case shows that g′−([ f M0− (γ−h )]) ≥
1

4L2
in this case.

Next, the proof of [31, Lemma 3.16] provides the existence of an M1 such that if g′±(γ) ≥ 1

4L2
then

g′±([ f n
± (γ)]) > δ for n ≥ M1. Finally, the proof of [31, Lemma 3.14] provides the existence of an M2

such that if g′±(γ) > 0, then g′±([ f n
± (γ)]) > g′±(γ) for all n ≥ M2. Hence for M � M0M1 +M2 we have

that the first conclusion of the alternative holds.

The second conclusion of the alternative follows from the proof of [31, Lemma 3.16] as well.

Indeed, in this lemma, it is shown that for each 0 < δ′ < 1 there is a λ > 0 such that if g±(γ) ≥ δ′
where γ is a path in G′± then | f n

± (γ)| ≥ 2
nλ |γ |. The argument now proceeds like above using a

possibly larger M. �

Combining the two previous statements, we can show north-south dynamics on PCurr(FN)
outside of a neighborhood of the fixed point [ηg].
Proposition 4.12. Under the standing assumption 4.4, given open neighborhoods U± of ∆± and W of [ηg]
there is an M > 0 such that for any rational current [ηh] ∈ PCurr(FN) −W , either ϕn[ηh] ∈ U+ or
ϕ−n[ηh] ∈ U− for all n ≥ M.

Proof. To begin, we observe that

〈e± ,µ〉
|µ| � 1 if and only if [µ] � [ηg]. Hence by continuity of 〈e+ , �〉

and compactness of PCurr(FN), there is an 0 < s < 1 such that

〈e± ,µ〉
|µ| ≤ 1 − s for [µ] < W .

Let 0 < δ0 < 1 and M0 be the maximum of constants from Proposition 4.10(1) using both U+ and

U−. Set δ �
√
δ0 and K > 1 large enough so that

K
K+1/s >

√
δ0. Finally, let M1 be the constant from
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Lemma 4.11 using these constants. Suppose that [ηh] < W and without loss of generality assume

that the first alternative of Lemma 4.11 holds for h. As |γ+h | � |γ
+

h |
′ + 〈e+ , γ+h 〉 we get |γ+h |

′/|γ+h | ≥ s

and so

〈e+ ,γ+h 〉
|γ+h |′

≤ 1−s
s < 1

s .

Therefore we find:

|[ f M1

+ (γ+h )]|
′

|[ f M1

+ (γ+h )]|
�

|[ f M1

+ (γ+h )]|
′

|[ f M1

+ (γ+h )]|′ + 〈e+ , γ
+

h 〉
�

1

1 +
〈e+ , γ+h 〉
|[ f M1

+ (γ+h )]|′

≥ 1

1 +
〈e+ , γ+h 〉
K |γ+h |′

≥ 1

1 +
1

Ks

�
K

K + 1/s >
√
δ0.

And thus:

g′+([ f M1

+ (γ+h )])|[ f
M1

+ (γ+h )]|
′

|[ f M1

+ (γ+h )]|
> δ

√
δ0 � δ0.

Hence by Proposition 4.10(1) we have ϕn[ηh] ∈ U+ for n ≥ M � M0 + M1. �

In order to promote Proposition 4.12 to generalized north-south dynamics everywhere, we need

to know that there are contracting neighborhoods. This is content of the next two lemmas and

where we need the notion of completely split goodness for currents and Lemma 4.9. We have one

lemma dealing with neighborhoods of ∆± and one lemma for neighborhoods of ∆̂±.

Lemma 4.13. Under the standing assumption 4.4, given open neighborhoods U± of ∆± there are open
neighborhoods U′± ⊆ U± of ∆± and such that ϕ±1(U′±) ⊆ U′±.

Proof. We first observe that for any point in [µ] ∈ ∆+, the completely split goodness g+([µ]) � 1.

This is because any such point is a linear combination of extremal points and extremal points are

defined using limits of edges [31, Proposition 3.3 and Definition 3.5], and as [ f n(e)] is completely

split for all n ≥ 1. Likewise g−([µ]) � 1 for any [µ] ∈ ∆−.
Using these observations the conclusion of the lemma follows from the proofs of Lemma 4.11

and Proposition 4.12. To begin, given a neighborhood U+ of ∆+ pick a neighborhood U0

+ ⊂ U+

such that for all [µ] ∈ U0

+ we have g(µ) > δ and

〈e+ ,µ〉
|µ| < s for some δ > s > 0. Let 0 < δ0 < 1 and

M0 be the constants from Proposition 4.10(1) for U0

+.

Given [ηh] ∈ U0

+ we find using Lemma 4.9:

g′+(γ+h ) ≥ g
′
+(γ+h )

|γ+h |
′

|γ+h |
� g+(γ+h ) −

〈e+ , γ+h 〉
|γ+h |

≥ g+(ηh) −
〈e+ , ηh〉
|ηh |

> δ − s .

As mentioned in the proof of Lemma 4.11, there is now an M1 such that g′+([ f n
+ (γ+h )]) >

√
δ0 for all

n ≥ M1. Combining now with the proof of Proposition 4.12, for a slightly larger M1, we have that

|[ f n
+ (γ+h )]|

′

|[ f n
+ (γ+h )]|

>
√
δ0 as well for n ≥ M1. By choice of δ0, this shows ϕM[ηh] ∈ U0

+ for M � M0 + M1 and

for any rational current [ηh] ∈ U0

+. As rational currents are dense, we get ϕM(U0

+) ⊆ U0

+.

Now set:

U′+ � U0

+ ∩ ϕ(U0

+) ∩ · · · ∩ ϕM−1(U0

+).
17



As ϕ(∆+) � ∆+, U′+ is a neighborhood of ∆. Clearly U′+ ⊆ U0

+ ⊆ U+ and ϕ(U′+) ⊆ U′+ by

construction.

A symmetric argument works for a neighborhood of ∆−. �

Lemma 4.14. Under the standing assumption 4.4, given open neighborhoods V̂± of ∆̂± there are open
neighborhoods V̂′± ⊆ V̂± of ∆̂± such that ϕ±1(V̂′±) ⊆ V̂′±.
Proof. Given [µ] ∈ PCurr(FN), a collection of reduced edge paths P in some marked graph G and

an ε > 0 determines an open neighborhood of [µ] in PCurr(FN):

NG([µ],P, ε) �
{
[ν] ∈ PCurr(FN) |

���� 〈γ, ν〉|ν | − 〈γ, µ〉|µ| ���� < ε, ∀γ ∈ P}
.

For a subset X ⊆ PCurr(FN), we define NG(X,P, ε) as the union of NG([µ],P, ε) over all [µ] ∈ X.

ByP+(L)we denote the set of all reduced edge paths contained in G′+ with length at most L. We

set P̂+(L) � P+(L) ∪ {e+}. We have⋂
L→∞, ε→0

NG+
(∆̂+ , P̂+(L), ε) � ∆̂+.

This follows as for any [µ] ∈ ∆+, 〈γ, µ〉 � 0 for any reduced edge path not contained in G′+ and as

[µ] � [ηg] if and only if 〈e+ , µ〉 � |µ|. There is a similar statement for ∆̂−.

Let L and ε be such that NG+
(∆̂+ , P̂+(L), ε) ⊆ V̂+. Let δ0 and M0 be the constants from Proposi-

tion 4.10(2) using this L and ε. Set V̂′+ � NG+
(∆̂+ , P̂+(L), ε) and let 0 < δ′ < 1 be such that g(µ) > δ′

for [µ] ∈ V̂′+. By replacing δ0 with a smaller positive number and M0 with a larger constant, we

can assume that δ0 and M0 also satisfy the conclusion of Proposition 4.10(1) for the neighborhood

V̂′+ as well.

We will now show that there is a constant M such that for any rational current [ηh] ∈ V̂′+ we

have ϕM[ηh] ∈ V̂′+. Arguing as in Lemma 4.13 the present lemma follows. There are two cases: γ+h
has a definite fraction in G′+; or not, i.e., [ηh] is close to [ηg].

The first case is similar to Lemma 4.13. Fix an 0 < s < δ′. If [µ] ∈ V̂′+ and

〈e+ ,µ〉
|µ| < s, then arguing

as in Lemma 4.13 we have g′+(γ+h ) > δ
′− s and so there is an M1 such that g′+([ f n(γ+h )])

|[ f n
+ (γ+h )]|

′

|[ f n
+ (γ+h )]|

> δ0

and so ϕn[ηh] ∈ V̂′+ for all n ≥ M0 + M1.

Thus for the second case we assume that [ηh] ∈ V̂′+ and

〈e+ ,γ+h 〉
|γ+h |

≥ s. If h is a power of a conjugate

of g, then ϕ([ηh]) � [ηh] ∈ V̂′+. Therefore we can assume that h is not a power of a conjugate of g.
Hence the path γ+h intersects G′+ nontrivially and so |[ f n

+ (γ+h )]|
′ ≥ 1 for all n ≥ 0.

Next we observe that given δ > 0 and R > 1, there is a constant M2 > 1 such that for any

reduced path α in G′+ which is not a Nielsen path, either g′+([ f M2

+ (α)]) > δ or |α |′ > R |[ f M2

+ (α)]|′.
This is the analog of [24, Proposition 4.18]. The idea is that any long enough reduced path α can

be subdivided into subpaths of length at most 10C, and we can find an exponent M1 such that for

any reduced edge path γ in G′+ with |γ | < 10C, the path [ f M2

+ (γ)] is completely split. This tells

that either [ f M1

+ (α)] has a definite completely split goodness, or the length |[ f M1

+ (α)]| decreases by
a definite amount. Hence an argument similar to the one in Lemma 4.11 tells that the following

holds after replacing M1 with a possibly larger constant:

For all h ∈ FN not conjugate to g, we have either:

(1) g′+([ f M1

+ (γ+h )]) > δ0; or

(2) | f M1

+ (γ+h )|
′ <

1

R
|γ+h |

′
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where
1

1+Rs < ε and
R

R+1/s > 1 − ε. Set M � M0 + M1.

First assume that (1) holds for h. Set t � 〈e+ , [ f M
+ (γ+h )]〉/|[ f

M
+ (γ+h )]|. As h is not a power of

a conjugate of g we have that 0 ≤ t < 1. As g′+([ f M1

+ (γ+h )]) > δ0, there is a current [µ] ∈ ∆+
satisfying the inequality in Proposition 4.10(2) for f M

+ (γ+h ). We normalize µ so that |µ| � 1.

With our normalization, we have that |tηg + (1 − t)µ| � 1 as well. We claim that ϕM[ηh] ∈
NG+
([tηg + (1 − t)µ], P̂+(L), ε) ⊆ V̂′+.

For a path α ∈ P+(L)we have 〈α, ηg〉 � 0, |[ f M
+ (γ+h )]|

′ � |[ f M
+ (γ+h )]|(1 − t) and so:���� 〈α, [ f M

+ (γ+h )]〉
|[ f M

+ (γ+h )]|
− 〈α, tηg+ (1 − t)µ〉

����
�

����� 〈α, [ f M
+ (γ+h )]〉(1 − t)

|[ f M
+ (γ+h )]|(1 − t)

− (1 − t)〈α, µ〉
�����

�

����� 〈α, [ f M
+ (γ+h )]〉

|[ f M
+ (γ+h )]|′

− 〈α, µ〉
����� (1 − t)

< ε(1 − t) ≤ ε.

Also as 〈e+ , µ〉 � 0 and 〈e+ , ηg〉 � 1 we find:����� 〈e+ , [ f M
+ (γ+h )]〉

|[ f M
+ (γ+h )]|

− 〈e+ , tηg + (1 − t)µ〉
����� � ��t − t〈e+ , ηg〉

��
� |t − t | � 0.

This shows ϕM[ηh] ∈ NG+
([tηg + (1 − t)µ], P̂+(L), ε) as claimed.

On the other hand if (1) fails then (2) holds for γ+h and so |[ f M
+ (γ+h )]|

′ ≤ 1

R |γ+h |
′
. We claim that

ϕM[ηh] ∈ NG+
([ηg], P̂+(L), ε). Notice that we have 〈e+ , [ f M

+ (γ+h )]〉 � 〈e+ , γ
+

h 〉 and
〈e+ ,γ+h 〉
|γ+h |′

≥ 〈e+ ,γ
+

h 〉
|γ+h |

≥
s.

For a path α ∈ P+(L)we have 〈α, [ f M
+ (γ+h )]〉 ≤ |[ f

M
+ (γ+h )]|

′
and so:

0 <
〈α, [ f M

+ (γ+h )]〉
|[ f M

+ (γ+h )]|
≤

|[ f M
+ (γ+h )]|

′

|[ f M
+ (γ+h )]|′ + 〈e+ , [ f

M
+ (γ+h )]〉

�
1

1 +
〈e+ ,γ+h 〉
|[ f M

+ (γ+h )]|′

≤ 1

1 +
R〈e+ ,γ+h 〉
|γ+h |′

≤ 1

1 + Rs
< ε.

Therefore as 〈α, ηg〉 � 0 we have: ����� 〈α, [ f M
+ (γ+h )]〉

|[ f M
+ (γ+h )]|

− 〈α, ηg〉
����� < ε.
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Additionally, we have:

1 >
〈e+ , [ f M

+ (γ+h )]〉
|[ f M

+ (γ+h )]|
�
〈e+ , γ+h 〉
|[ f M

+ (γ+h )]|
�

〈e+ , γ+h 〉
|[ f M

+ (γ+h )]|′ + 〈e+ , γ
+

h 〉

≥
〈e+ , γ+h 〉

1

R |γ+h |′ + 〈e+ , γ
+

h 〉
�

R〈e+ , γ+h 〉
|γ+h |′ + R〈e+ , γ+h 〉

�
R

R +
|γ+h |′
〈e+ ,γ+h 〉

≥ R
R + 1/s > 1 − ε.

Therefore as 〈e+ , ηg〉 � 1 we have:����� 〈e+ , [ f M
+ (γ+h )]〉

|[ f M
+ (γ+h )]|

− 〈e+ , ηg〉
����� < ε.

This shows ϕM[ηh] ∈ NG+
([ηg], P̂+(L), ε) as claimed. �

4.5. Generalized north-south dynamics for almost atoroidal elements. Using the material from

the previous two sections, we can now prove the main technical result needed for Theorem A.

Theorem 4.15. Suppose A < FN is a co-rank 1 free factor and ϕ ∈ IAN(Z/3) ∩Out(FN ; A) is such that
ϕ
��
A is atoroidal. Let ∆+ and ∆− be the inclusion to PCurr(FN) of the ϕ–invariant simplices in PCurr(A)

from Theorem 4.2 for ϕ
��
A. Assume ϕ is not atoroidal and let [g] be the fixed conjugacy class in FN given

by Proposition 4.1(2). Then ϕ acts on PCurr(FN) with generalized north-south dynamics. Specifically, for
the two invariant sets

∆̂− � {[tηg + (1 − t)µ−] | [µ−] ∈ ∆− , t ∈ [0, 1]}
and

∆̂+ � {[tηg + (1 − t)µ+] | [µ+] ∈ ∆+ , t ∈ [0, 1]},

given any open neighborhood U± of ∆± in PCurr(FN) and open neighborhood V̂± of ∆̂± in PCurr(FN),
there is an M > 0 such that ϕ±n(PCurr(FN) − V̂∓) ⊂ U± for all n ≥ M.

See Figure 1 for a schematic of the sets mentioned in Theorem 4.15.

Proof. We replace ϕ by a power so that the results from Section 4.4 apply. This is addressed at the

end of the proof.

By Lemmas 4.13 and 4.14 we can assume that ϕ(U+) ⊆ U+ and V̂− ⊆ ϕ(V̂−). Let M be the

exponent given by Proposition 4.12 by using U+ � U+ and U− � W � V̂−.
For any current

[µ] ∈ ϕM(PCurr(FN) − V̂−) � PCurr(FN) − ϕM(V̂−) ⊆ PCurr(FN) −W

we have ϕM[µ] ∈ U+ by Proposition 4.12, as ϕ−M[µ] < V̂−. Therefore for any current [µ] ∈
PCurr(FN) − V̂−, we have ϕ2M[µ] ∈ U+ and hence ϕ2n[µ] ∈ U+ for all n ≥ M as ϕ(U+) ⊆ U+.

Therefore,

ϕ2n(PCurr(FN) − V̂−) ⊂ U+

for all n ≥ M. A symmetric argument for ϕ−1
shows that ϕ2

acts with generalized north-south

dynamics. We then invoke [24, Proposition 3.4] to deduce that ϕ (and also the original outer

automorphism as well) acts with generalized north-south dynamics. �
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∆+ ⊂ U+

∆̂+ ⊂ V̂+

∆− ⊂ U−

∆̂− ⊂ V̂−

[ηg]

PCurr(A)

Figure 1. The set-up of neighborhoods in Theorem 4.15. For n ≥ M, the element

ϕn
sends the complement of V̂− into U+; the element ϕ−n

sends the complement of

V̂+ into U−.

We conclude this section with the analog to Lemma 4.3 regarding the behavior of length under

iteration of ϕ that is needed for Theorem 5.2. In this statement and its proof, we assume ϕ ∈
Out(FN) satisfies the hypotheses of Theorem 4.15 and ∆±, ∆̂± are the ϕ–invariant simplices in

PCurr(FN) appearing in the statement of that theorem.

Lemma 4.16. For each C > 0 and neighborhood V̂ ⊂ PCurr(FN) of ∆̂− there is a constant M > 0 such
that if [µ] < V̂ , then |ϕnµ| ≥ C |µ| for all n ≥ M.

Proof. There is a constant P such that for each current [ν] ∈ ∆(0)+ there is a real number λν > 1

such that ϕPν � λνν [24, Remark 6.5]. Let λ0 � min{λν | [ν] ∈ ∆(0)+ } and B0 be large enough so

that λB0

0
≥ 3. Hence |ϕPB0ν | ≥ 3|ν | for any [ν] ∈ ∆(0)+ . Since the weight function is linear, for any

[µ] ∈ ∆+ we have |ϕPB0µ| ≥ 3|µ| too.
Hence there is a neighborhood U ⊆ PCurr(FN) of ∆+ such that |ϕPB0µ| ≥ 2|µ| for all [µ] ∈ U.

By replacing U with a smaller neighborhood, we may assume ϕ(U) ⊆ U and U ∩ ∆− � ∅ by

Lemma 4.13. Hence |ϕaPB0µ| ≥ 2
a |µ| for [µ] ∈ U. Let K � inf{|ϕiµ|/|µ| | [µ] ∈ U, 0 ≤ i < PB0}.

Let M0 be the constant fromTheorem 4.15 applied to the neighborhoodsU and V̂ . AsPCurr(FN)
is compact, there is a constant L > 0 such that |ϕM0µ| ≥ L |µ| for all [µ] ∈ PCurr(FN).

Let B1 be large enough so that 2
B1 KL ≥ C and set M � PB0B1 + M0. If n ≥ M, we can write

n � aPB0 + i + M0 where a ≥ B1 and 0 ≤ i < PB0. Then for [µ] < V̂ , we have [ϕM0µ], [ϕi+M0µ] ∈ U
and so

|ϕnµ| ≥ 2
a |ϕi+M0µ| ≥ 2

aK |ϕM0µ| ≥ 2
aKL |µ| ≥ C |µ|. �

5. Pushing past single-edge extensions

In this section we apply Theorem 4.15 to deal with the case of pushing past single-edge exten-

sions. Here we use the action on the space of currents to demonstrate that an element is atoroidal.

Given a single-edge extension F0 @ F1 invariant under H and ϕ ∈ H such that ϕ
��
F0

is atoroidal,

if there is some nontrivial g ∈ FN whose conjugacy class is ϕ–periodic, we will either find a finite

index subgroup of H that fixes [g], or an element ψ ∈ H so that we can play ping-pong with ϕ,
ψϕψ−1

to produce an element which is atoroidal on F1.
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To begin, we need a lemma that sets up the appropriate conditions for playing ping-pong.

Lemma 5.1. Suppose F0 @ F1 is a handle extension that is invariant under H < IAN(Z/3) and ϕ ∈ H

is such that ϕ
��
F0

is atoroidal. Assume ϕ
��
F1

is not atoroidal and let [A] ∈ F0 and g ∈ FN be as given by
Proposition 4.1(2) and denote F � A ∗ 〈g〉. Let ∆+(A) and ∆−(A) be the inclusion to PCurr(F) of the
invariant simplices in PCurr(A) from Theorem 4.2 for ϕ

��
A and for each other [B] ∈ F0, let ∆+(B) and

∆−(B) be the invariant simplices in PCurr(B) from Theorem 4.2 for ϕ
��
B. Either:

(1) there is a finite index subgroup H′ of H such that H′[g] � [g]; or
(2) there is a ψ ∈ H such that ψ[g] , [g] and ∆+(B) ∩ ψ

��
B∆−(B) � ∆−(B) ∩ ψ

��
B∆+(B) � ∅ for all

[B] ∈ F0 (including [A]).

Proof. Consider the orbit of the conjugacy class [g] under H. If the orbit is finite, then there is a

finite index subgroup H′ of H that fixes [g] and so (1) holds.

Else, there is an infinite set X ⊆ H such that h1[g] , h2[g] for all distinct h1 , h2 ∈ X. We claim

that there is a pair h1 , h2 ∈ X such that ψ � h−1

2
h1 satisfies the conclusion (2). By construction of

X, we have h−1

2
h1[g] , [g] for all distinct h1 , h2 ∈ X and so we only need to concern ourselves with

the intersection of the simplices. To ease notation here, we will implicitly be using the appropriate

restrictions of the elements in X.

To this end, we first consider the vertices∆±(B)(0) for each [B] ∈ F1, i.e., the extremalmeasures in

∆±(B). For each such extremal measure [µ], the support supp([µ]) contains a sublamination that is

uniquely ergodic. Indeed, any suchmeasure comes from an aperiodic EG stratum Hr in theCT that

represents ϕ [31, Remark 3.4 and Definition 3.5]. The restriction of ϕ to each ϕ–invariant minimal

free factor B0 contained in π1(Gr) is both fully irreducible and atoroidal. The support supp(µ0)
of the corresponding attracting current [µ0] is contained in the support of [µ], and supp(µ) is
uniquely ergodic [29, Proposition 4.4].

The fact that supp(µ0) ⊂ supp(µ) follows from the following facts. Recall that for any ν ∈
Curr(FN), supp(ν) consists of all bi-infinite paths β such that for any finite subpath γ of β 〈γ, ν〉 > 0

[22, Lemma 3.7]. Note that by definition the bi-infinite path β obtained by iterating an edge e in

an EG stratum is in the support of the corresponding current. Further, for e ∈ Hr , the attracting

lamination corresponding to Hr is the closure of β [5, Lemma 3.1.10 and Lemma 3.1.15]. The

attracting lamination corresponding to a minimal stratum on which Hr maps over is precisely the

support of µ0, hence

supp(µ0) � Λ(B0 , ϕ) ⊂ Λ(π1(Gr), ϕ).

Moreover, there are only finitely many such sublaminations. We set Eϕ to be the set of projective

classes of currents obtained by restricting an extremal measure in some ∆±(B)(0) to a uniquely

ergodic sublamination contained in its support.

Since the set Eϕ is finite, we can replace X with an infinite subset (which we will still denote X)

such that for each s ∈ Eϕ either h1s � h2s for all h1 , h2 ∈ X or h1s , h2s for all distinct h1 , h2 ∈ X.

Let E1 ⊆ Eϕ be the subset for which the first alternative occurs and E∞ � Eϕ − E1.

Next fix an arbitrary h1 ∈ X and for each s ∈ E∞ let

Xs � {h ∈ X | h1s � hs′ for some s′ ∈ E∞}.

Notice that each Xs is finite set. Take h2 ∈ X −⋃
s∈E∞ Xs . Then for any s ∈ E∞ we have h1s , h2s′

for any s′ ∈ E∞. If h1s � h2s′ for some s′ ∈ E1, then s � h−1

1
h2s′ � s′, contradicting the fact that

s ∈ E∞. Therefore h−1

2
h1s < Eϕ for all s ∈ E∞ and h−1

2
h1s � s for all s ∈ E1.

Set ψ � h−1

2
h1. We have that for any s ∈ Eϕ, either ψs � s or ψs < Eϕ.
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Now take [µ] ∈ ∆−(B) for some [B] ∈ F1 and suppose that ψ[µ] ∈ ∆+(B). Therefore we canwrite

µ �
∑m

i�1
aiµ−i for some extremal measures [µi] ∈ ∆−(B)(0) and coefficients ai > 0. Hence we have:

m∑
i�1

aiψµ
−
i � ψµ �

n∑
j�1

b jµ
+

j

for some extremal measures [µ+

j ] ∈ ∆+(B)(0) and coefficients b j > 0. In particular the union of the

supports of supp(ψµ−i ) for i � 1, . . . ,m equals the union of the supports supp(µ+

j ) for j � 1, . . . , n.
Let Λ ⊆ supp(µ−

1
) be a uniquely ergodic sublamination. As uniquely ergodic laminations are

minimal, ψΛ is a sublamination of supp(µ+

j ) for some j. Thus ψ[µ−
1

��
Λ
] � [µ+

j

��
Λ
]. This is a

contradiction as [µ−
1

��
Λ
], [µ+

j

��
Λ
] ∈ Eϕ are distinct. �

We can now play ping-pong to construct atoroidal elements.

Proposition 5.2. Suppose F0 @ F1 is a single-edge extension that is invariant under H< IAN(Z/3) and
ϕ ∈ H is such that ϕ

��
F0

is atoroidal. Assume ϕ
��
F1

is not atoroidal and let [g] be the fixed conjugacy class
in FN given by Proposition 4.1(2). Either:

(1) there is a finite index subgroup H′ of H such that H′[g] � [g]; or
(2) there is a ψ ∈ H and a constant M > 0 such that (θmϕn)

��
F1

is atoroidal for any m , n ≥ M where
θ � ψϕψ−1.

Proof. Assume (1) does not hold. Letψ ∈ Hbe the element given by Lemma 5.1 and set θ � ψϕψ−1
.

Also, let [A] ∈ F0 be the free factor given by Proposition 4.1 and denote F � A ∗ 〈g〉. Notice that

θ
��
B is atoroidal for all [B] ∈ F0 and [g′] � ψ[g] , [g] is the only conjugacy class in F1 fixed by θ up

to taking powers and inversion. We will show that for sufficiently large m and n and any [B] ∈ F1

the element (θmϕn)
��
B does not have any non-zero fixed points in Curr(B).

For each [B] ∈ F0, let ∆±(B) be the invariant simplices as defined in Lemma 5.1. By this lemma

we have that ∆+(B) ∩ψ
��
B∆−(B) � ∆−(B) ∩ψ

��
B∆+(B) � ∅ for any [B] ∈ F0. To begin, we will assume

that F0 � {[A]}, F1 � {[F]} and to simplify notation, we will implicitly use the restrictions of the

elements to F.
There are open sets U,V, Û , V̂ ⊂ PCurr(F) such that:

(1) ∆+ ⊂ U, ∆̂+ ⊂ Û, ∆− ⊂ V and ∆̂− ⊂ V̂ ;

(2) U ⊆ Û, V ⊆ V̂ ; and

(3) Û ∩ ψV̂ � ∅ and ψÛ ∩ V̂ � ∅.
See Figure 2.

Let M0 be the constant from Theorem 4.15 applied to ϕ with U and V̂ . Let M1(ϕ), M1(θ)
respectively, be the constants from Lemma 4.16 applied to ϕ with V̂ , θ with ψV̂ respectively with

C � 2. Likewise, let M1(ϕ−1), M1(θ−1) respectively, be the constants from Lemma 4.16 applied to

ϕ−1
and Û, θ−1

and ψÛ respectively with C � 2.

Set M � max{M0 ,M1(ϕ),M1(θ),M1(ϕ−1),M1(θ−1)} and suppose m , n ≥ M. Let µ ∈ Curr(F)
be non-zero.

If [µ] < V̂ , then ϕn[µ] ∈ U (Theorem 4.15) and |ϕnµ| ≥ 2|µ| (Lemma 4.16). Further ϕn[µ] < ψV̂
and so |θmϕnµ| ≥ 2|ϕnµ| ≥ 4|µ| (Lemma 4.16 again). Hence θmϕnµ , µ.

Else [µ] ∈ V̂ and so [µ] < ψÛ. Hence θ−m[µ] ∈ ψV (Theorem 4.15) and |θ−mµ| ≥ 2|µ|
(Lemma 4.16). Further θ−m[µ] < Û and so |ϕ−nθ−mµ| ≥ 2|θ−mµ| ≥ 4|µ| (Lemma 4.16 again).

Hence θmϕnµ , µ.
Therefore (θmϕn)

��
F is atoroidal.
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∆+

ψ∆+

∆−

ψ∆−

U ⊂ Û

ψU ⊂ ψÛ

V ⊂ V̂

ψV ⊂ ψV̂

[ηg]

ψ[ηg]

Figure 2. The set-up of neighborhoods in PCurr(F) for Proposition 5.2.

The general case is a straight forward modification, additionally playing ping-pong simulta-

neously in each Curr(B) for [B] ∈ F0 − {[A]} using Theorem 4.2 in place of Theorem 4.15 and

Lemma 4.3 in place of Lemma 4.16. �

Putting together the previous results, we get the following proposition which allows us to push

past single-edge extensions. Care needs to be taken to avoid distributing the action on other

extensions which adds a layer of technicality.

Proposition 5.3. Suppose H< IAN(Z/3). Let
∅ � F0 @ F1 @ · · · @ Fk � {[FN]}

be an H–invariant filtration by free factor systems and supposeFi−1 @ Fi is a single-edge extension for some
2 ≤ i ≤ k. Suppose there exists some ϕ ∈ H such that:

(a) the restriction of ϕ to Fi−1 is atoroidal; and
(b) ϕ is irreducible andnon-geometricwith respect to eachmulti-edge extensionFj−1 @ Fj , j � 1, . . . , k.

Then either:
(1) there is a finite index subgroup H′ of Hand a nontrivial element g ∈ FN such that H′[g] � [g]; or
(2) there exists an element ϕ̂ ∈ H such that:

i. the restriction of ϕ̂ to Fi is atoroidal; and
ii. ϕ̂ is irreducible and non-geometric with respect to each multi-edge extension Fj−1 @ Fj ,

j � 1, . . . , k.

Proof. As mentioned in Section 1.2, there are three types of single-edge extensions. We deal with

these separately.

If Fi−1 @ Fi is a circle extension, then Fi � Fi−1 ∪ {[〈g〉]} for some nontrivial element g ∈ FN .

As both Fi−1 and Fi are H–invariant, we have H[g] � [g] and so (1) holds.

If Fi−1 @ Fi is a barbell extension then by Proposition 4.1, ϕ
��
Fi

is atoroidal. Hence we may take

ϕ̂ � ϕ to satisfy (2).

Lastly, we assume thatFi−1 @ Fi is a handle extension. Ifϕ
��
Fi
is atoroidal, then ϕ̂ � ϕ satisfies (2).

Else, by Proposition 5.2, either there is a finite index subgroup H′ of H such that H′[g] � [g] or
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there is an element ψ ∈ H and constant M such that (θmϕn)
��
F1

is atoroidal for m , n ≥ M where

θ � ψϕψ−1
.

If the finite index subgroupH′ exists, then clearly (1) holds andhence, we assume the existence of

the elementψ ∈ Hand constantM with theproperties above. LetS � { j | Fj−1 @ Fj is multi-edge}.
What remains to show is that for some m , n ≥ M the element θmϕn

is irreducible and non-

geometric with respect to Fj−1 @ Fj for all j ∈ S.
Suppose j ∈ S. As in [10, Theorem 6.6], there is a single component [B j] ∈ Fj that is not a

component of Fj−1 and subgroups A j,1 , . . . ,A j,k < B j where {[A j,1], . . . , [A j,k]} ⊆ Fj−1 such that

for Aj , the free factor system in B j determined by A j,1 , . . . ,A j,k , the restriction ϕ
��
B j
∈ Out(B j ; Aj)

is irreducible and non-geometric. Let X j � ZF(B j ; Aj) be the δ–hyperbolic graph given by

Theorem 3.2. Notice that by (b), the element ϕ and its conjugate θ act as hyperbolic isometries on

X j . The remainder of the argument is an easy exercise using δ–hyperbolic geometry, we sketch

the details.

Recall that two hyperbolic isometries of a δ–hyperbolic space X are said to be independent if
their fixed point sets in ∂X are disjoint and dependent otherwise. Let I ⊆ S be the subset of indices

where ϕ and θ are independent and D � S − I. By [10, Proposition 4.2] and [10, Theorem 3.1],

there are constants m , n0 ≥ M such that θmϕn
acts hyperbolically on X j if j ∈ I and n ≥ n0. Then,

by [10, Proposition 3.4], there is an n ≥ n0 such that θmϕn
acts hyperbolically on X j if j ∈ D. By

Theorem 3.2, the element θmϕn
is irreducible and non-geometric with respect to each Fj−1 @ Fj

when j ∈ S. This shows that (2) holds. �

6. Proof of the subgroup alternative

In this section, we complete the proof of the main result of this article.

Theorem A. Let H be a subgroup of Out(FN) where N ≥ 3. Either H contains an atoroidal element or
there exists a finite index subgroup H′ of H and a nontrivial element g ∈ FN such that H′[g] � [g].
Proof. Without loss of generality, we may assume that H < IAN(Z/3). Let ∅ � F0 @ F1 @ · · · @
Fm � {[FN]} be a maximal H–invariant filtration by free factor systems. By the Handel–Mosher

Subgroup Decomposition, for each Fi−1 @ Fi which is a multi-edge extension, H contains an

element which is irreducible with respect to this extension [18, Theorem D].

Suppose that there is no finite index subgroup H′ of H and nontrivial g ∈ FN such that

H′[g] � [g]. In particular, every multi-edge extension Fi−1 @ Fi is non-geometric by Theorem 3.1.

Therefore, by Corollary 3.4 there is a ϕ ∈ H that is irreducible and non-geometric with respect to

each multi-edge extension Fj−1 @ Fj for j � 1, . . . ,m.

We claim that for each i � 1, . . . ,m there is an ϕi ∈ H whose restriction to Fi is atoroidal

and is irreducible and non-geometric with respect to each multi-edge extension Fj−1 @ Fj for

j � 1, . . . ,m.

Indeed, by our assumptions, ∅ � F0 @ F1 must be a multi-edge extension and so we can take

ϕ1 � ϕ.
Now assume that ϕi−1 exists. If Fi−1 @ Fi is a single-edge extension, we apply Proposition 5.3

to ϕ � ϕi−1 and set ϕi � ϕ̂. Else, Fi−1 @ Fi is a multi-edge extension and we apply Lemma 3.3 to

ϕi−1 and the extension Fi−1 @ Fi to conclude that we may set ϕi � ϕi−1 in this case.

Thus the elements ϕi as claimed exist. By construction, the element ϕm ∈ H is atoroidal. �
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