
ATOROIDAL DYNAMICS OF SUBGROUPS OF Out(FN)
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Abstract. We show that for any subgroup H of Out(FN ), either
H contains an atoroidal element or a finite index subgroup H′ of
H fixes a nontrivial conjugacy class in FN . This result is an ana-

log of Ivanov’s subgroup theorem for mapping class groups and

Handel–Mosher’s subgroup theorem for Out(FN ) in the setting of

irreducible elements.

Introduction

Let S be an orientable surface of finite type with χ(S) < 0 and

f : S → S be an orientation preserving homeomorphism. Nielsen–

Thurston classification states that after replacing f with an isotopic

homeomorphism, there is an invariant collection of disjoint essential

simple closed curves C (possibly empty) so that the complement of

an open collar neighborhood of C decomposes into invariant sub-

surfaces (possibly disconnected), where the restriction of f to each

subsurface is either finite order or pseudo-Anosov [8, 30]. In par-

ticular, if the action of f on the set of isotopy classes of essential

simple closed curves does not have a finite orbit, then f is isotopic

to a pseudo-Anosov homeomorphism. For our purposes, we will

not need the definition of a pseudo-Anosov homeomorphism but we

note that such homeomorphisms have a very rigid structure and pos-

sess desirable dynamical properties. One such example is a theorem

of Thurston that states that the 3–manifold M f , called the mapping
torus of f , obtained from S × [0, 1] by gluing S × {1} to S × {0} via f ,
admits a hyperbolic structure if and only if f is isotopic to a pseudo-

Anosov homeomorphism [29]. The importance of Thurston’s result

is magnified by the recent breakthrough results of Agol proving that

every closed hyperbolic 3–manifold has a finite cover that fibers over

the circle, i.e., can be obtained by the above construction [1].

Ivanov strengthened the Nielsen–Thurston classification of home-

omorphisms to subgroups of the mapping class group Mod(S), the
group of isotopy classes of orientation preserving homeomorphisms

of S. Specifically, he proved that if the action of a subgroup H <
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Mod(S) on the set of isotopy classes of essential simple closed curves

does not have a finite orbit, then H contains a pseudo-Anosov ele-

ment, i.e., the isotopy class of apseudo-Anosovhomeomorphism [23].

A priori, each element in Hcould have a finite orbit and yet the sub-

groupmight not have a finite orbit. What Ivanov proves is that if two

elements in H have sufficiently transverse finite orbits (in a precise

sense), then some product of their powers is pseudo-Anosov. Ivanov

accomplishes this using classical ping-pong and other dynamical ar-

guments on the space of projectivized measured laminations on S.
The outer automorphism group of a non-abelian free group FN of

finite rank is the quotient Out(FN) � Aut(FN)/Inn(FN). This group

is closely related to Mod(S), in particular by the Dehn–Nielsen–Baer

theorem, see [13]. During the last 30 years, the development of the

theory of Out(FN) has closely followed that of Mod(S), and to some

extend that of GL(n ,Z) as well. Examples of this beneficial analogy

include the introduction of the Culler–Vogtmann outer space [11],

the construction of train-track representatives [5] and more recently

an investigation into the geometry of the free factor and free splitting

complexes [3, 16].

The notion of a pseudo-Anosov element inMod(S) has two analogs

inOut(FN). Oneof theseuses the characterizationofpseudo-Anosovs

as the (infinite order) elements in Mod(S) that do not restrict to a

proper subsurface. An outer automorphism ϕ ∈ Out(FN) is called

fully irreducible if no positive power of ϕ fixes the conjugacy class

of a proper free factor, i.e., the action of ϕ on the set of conjugacy

classes of proper free factors does not have a finite orbit (see Section 1

for complete definitions). Like pseudo-Anosov elements, these outer

automorphisms have a very rigid structure and possess desirable

dynamical properties.

The other analog uses the characterization of pseudo-Anosovs as

the elements whose mapping torus admits a hyperbolic metric. An

outer automorphism ϕ ∈ Out(FN) is called atoroidal if no positive

power of ϕ fixes the conjugacy class of a nontrivial element in FN ,

i.e., the action of ϕ on the set of conjugacy classes of nontrivial

elements on FN does not have a finite orbit. Paralleling the result of

Thurston about fibered 3–manifolds, combined results of Bestvina–

Feighn and Brinkmann show that the semi-direct product using the

automorphism Φ ∈ Aut(FN):
FN oΦ Z � 〈x1, . . . , xN , t | t−1xi t � Φ(xi)〉

is δ–hyperbolic if and only if the outer automorphism class [Φ] ∈
Out(FN) is atoroidal [2, 7].
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Our main result is the analog of Ivanov’s theorem in the setting of

Out(FN) corresponding to atoroidal elements.

Theorem A. Let H be a subgroup of Out(FN) where N ≥ 3. Either H

contains an atoroidal element or there exists a finite index subgroup H′ of
H, and a nontrivial element g ∈ FN such that H′[g] � [g].

When N � 2 the theorem holds as well. This follows as Out(F2) is
naturally isomorphic to the extendedmapping class group of a torus

with a single boundary component and hence every subgroup has

an index two subgroup that fixes the conjugacy class corresponding

to the boundary component.

Essential to our proof of this theorem is the analog of Ivanov’s

theorem in the setting of Out(FN) corresponding to fully irreducible

elements as recently shown by Handel–Mosher [17]. Specifically,

they prove that for a finitely generated subgroup H < Out(FN),
either H contains a fully irreducible element or there exists a finite

index subgroup H′ of H, and a proper free factor A < FN such that

H′[A] � [A]. The idea of their proof is similar in spirit to that of

Ivanov. If two elements in Hhave sufficiently transverse finite orbits

on the set of conjugacy classes of proper free factors, then some

product of their powers is fully irreducible. In this setting Handel–

Mosher use the action on the space of laminations on FN . Later,

Horbez generalized this result to all subgroups of Out(FN) dropping
the finitely generated assumption using the action of Out(FN) on the

free factor complex [22].

Whereas Ivanov’s theorem allows for repeated inward application

to decompose a surface completely relative to the action of a some

subgroup H< Mod(S), the above stated version in Out(FN) for fully
irreducible elements does not. The difference arises as if a subsurface

is invariant, so is its complement, but if the conjugacy class of a proper

free factor A is invariant, there is no reason why there must be an

invariant splitting A ∗ B. Handel–Mosher have extended their above

mentioned result to give a complete decomposition of FN relative

to the action of some finitely generated subgroup H < Out(FN).
Specifically, they show that for any maximal H–invariant filtration

∅ � F0 @ F1 @ · · · @ Fk � {[FN]} of free factor systems, if the

extension Fi−1 @ Fi is multi-edge, then there is an element ϕ ∈ H

which is fully irreducible with respect to this extension (see Section 1

for full details). More recently, Horbez–Guirardel generalized this

classification to all subgroups of Out(FN) using the action of Out(FN)
on several hyperbolic complexes [15].
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The proof of Theorem A builds on the above subgroup decompo-

sition results. The general strategy is to work from the bottom up: if

Hcontains an element whose restriction toFi−1 is atoroidal either we

find an element in Fi whose orbit is finite, or we produce an element

in H whose restriction to Fi is atoroidal. Techniques and results

from Handel–Mosher and Guirardel–Horbez take care of the case

when Fi−1 @ Fi is a multi-edge extension. The single-edge case re-

quires a different approach. Indeed, when Fi−1 @ Fi is a single-edge

extension, the corresponding space of laminations is empty and so

Handel–Mosher techniques do not apply. On the other hand, trying

to prove TheoremA using solely by hyperbolic geometric methods is

hopeless. There are commuting non-atoroidal elements in Out(FN)
whose product is atoroidal (an example appears below) which im-

plies there is no δ–hyperbolic Out(FN) complex whose loxodromic

isometries are precisely atoroidal elements [28].

In order to deal with single-edge extensions, we use the space of

geodesic currents Curr(FN) (see Section 2 for full details). This is the

natural space for exhibiting that an element is atoroidal as it can be

naturally viewed as the closure of the space of conjugacy classes in

FN . Our main technical result, Theorem 4.15, analyzes the dynamics

of an element ϕ ∈ Out(FN) that leaves invariant a co-rank 1 free factor

A and whose restriction to A is atoroidal. If ϕ is not atoroidal, we

show that there are simplices ∆+,∆− in PCurr(FN) and a counting

current [ηg] for which ϕ has generalized north-south dynamics with

∆̂+ � Cone(∆+, [ηg]) and ∆̂− � Cone(∆−, [ηg]). Specifically, points

outside of a neighborhood of ∆̂− aremoved by ϕ into a neighborhood

of ∆+ and vice versa for ϕ−1
(see Figure 1). This set-up is akin to the

set-up for a nonatoroidal fully irreducible element (which necessarily

is a pseudo-Anosov homeomorphismof a surfacewith one boundary

component), where the fixed counting current corresponds to the

boundary component of the associated surface [32, Theorem B]. This

result is of independent interest as there is little known about the

action of nonatoriodal elements on Curr(FN) in general.

A natural question is whether there is a stronger conclusion to

Theorem A. Precisely, is it the case that if H < Out(FN) contains
an atoroidal element, must it be that either H is virtually cyclic or

else contains a subgroup isomorphic to F2 in which every nontrivial

element is atoroidal? The corresponding analog in the setting of

Mod(S) is true and was shown by Ivanov [23]; the corresponding

analog for fully irreducible elements in Out(FN) is true and was

shown by Kapovich–Lustig [26]. In the present setting however,
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the stronger conclusion does not hold. The key point, as it was for

obstructing a δ–hyperbolic complexwhose loxodromic isometries are

precisely the atoriodal elements, is that the centralizer of an atoroidal

element is not virtually cyclic in general. Indeed, if ϕ ∈ Out(F3)
is atoroidal, then so is ϕ ∗ ϕ ∈ Out(F3 ∗ F3). The subgroup H �

〈ϕ ∗ id, id ∗ ϕ〉 is free abelian of rank 2 and contains an atoroidal

element.

In light of the above discussion, one might conjecture that if H <
Out(FN) contains an atoroidal element ϕ, then either H virtually
centralizes ϕ: for all h ∈ H, there is an n > 0 such that hϕn � ϕnh or

H contains a subgroup isomorphic to F2 in which every nontrivial

element is atoroidal. However, even this weaker statement is not

true. For example, take atoroidal elements ϕ, ψ ∈ Out(F3) such that

〈ϕ, ψ〉 � F2 and consider the subgroup H� 〈ϕ ∗ϕ, ϕ ∗ψ〉 ⊂ Out(F6).
Any non-trivial element of H is of the form ϕn ∗ ω where n ∈ Z
and ω ∈ 〈ϕ, ψ〉 is non-trivial. In particular H does not virtually

centralize any of its non-trivial elements. However, given any two

elements θ1, θ2 ∈ H, we have θ1 � ϕn1 ∗ω1 and θ2 � ϕn2 ∗ω2 and thus

we find that θn2

1
θ−n1

2
� id ∗ωn2

1
ω−n1

2
which is not atoroidal. Therefore

〈θ1, θ2〉 is not purely atoroidal.

The right characterization is the following statement.

Theorem B. Let H< Out(FN) be a subgroup which contains an atoroidal
element ϕ. Then, Hcontains a purely atoroidal free subgroup if and only if
the restriction of H to each minimal H–invariant free factor is not virtually
cyclic.

Proof. The “if” direction follows from [33, Lemma 4.3]. For the other

direction, let A < FN be a minimal H–invariant free factor such

that the restriction of H to A is virtually cyclic (see Section 1.3 for

definitions). The proof of [33, Lemma 4.3] implies that the restriction

of each element in H to A is has a power which is equal to a power

of the restriction of ϕ to A. Now assume that Hcontains a subgroup

isomorphic to F2, generated by ψ1, ψ2. By above observation, there

exist nonzero integers n1, n2, k such that ψ1

��n1

A � ϕ
��k
A � ψ2

��n2

A . Then

the element ψn2

1
ψ−n1

2
∈ 〈ψ1, ψ2〉 fixes each element in A and hence is

not atoroidal. Thus the subgroup 〈ψ1, ψ2〉 is not purely atoroidal. �

Organization of paper. Section 1 reviews the theory of outer auto-

morphisms needed. In particular, the notions of free factor systems,

the Handel–Mosher subgroup decomposition and train tracks are

recalled. Definitions of geodesic currents are presented in Section
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2. As mentioned above, we deal separately with multi-edge and

single-edge extensions. Section 3 shows how to apply the results of

Handel–Mosher and Guirardel–Horbez to push past multi-edge ex-

tensions. The main technical result, that of generalized North-South

dynamics for co-rank 1 atoroidal elements, constitutes themajority of

Section 4. In Section 5, we show how to apply this result to push past

single-edge extensions. Lastly, in Section 6, we combine the above

two cases to complete the proof of Theorem A.

Acknowledgements. The authors thank Camille Horbez for telling

them about his upcoming work with Guirardel [15] and useful dis-

cussions. Second author is grateful to Jon Chaika for illuminating

discussions regarding ergodic theory.

1. Outer automorphisms and train tracks

In this section we collect definitions and some of the fundamental

results regarding Out(FN)we use in the sequel.

1.1. Graphs, maps and markings. A graph G is a 1–dimensional cell

complex. The 0–cells of G are called vertices, and the 1–cells of G are

called (topological) edges. We denote the set of vertices by VG and the

set of edges byEtopG. Identifying the interior of each topological edge

e ∈ EtopG with the open interval (0, 1)we get exactly two orientations

on e. The set of oriented edges of G is denoted by EG. For each edge

e ∈ EtopG, we choose a positive orientation for e, and denote the set of

positively oriented edges byE+G. Given an oriented edge e ∈ EG, the

edge with the opposite orientation is denoted by e−1
. Furthermore,

we denote the initial point of the oriented edge e by o(e) and the

terminal point by t(e).
Ofparticular importance is theN–rose, denotedbyRN , which is the

graph with a single vertex v and N edges. We fix an isomorphism

FN � π1(RN , v) which we will use implicitly throughout. Using

this isomorphism, homotopy equivalences of RN determine outer

automorphisms of FN and vice versa.

An edge path γ of length n is a concatenation γ � e1e2 . . . en of

oriented edges in G such that t(ei) � o(ei+1) for all i � 1, . . . , n − 1.

The length of a path is denoted by |γ |. The edge path γ as above is

called reduced if ei , e−1

i+1
for all i � 1, . . . , n − 1. Further, a reduced

edge path γ � e1e2 . . . en is called cyclically reduced if t(en) � o(e1) and
en , e−1

1
. For any edge path γ, there is a unique reduced edge path

[γ] homotopic to γ rel endpoints.
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A (topological) graph map f : G0 → G1 is a homotopy equivalence

where:

• f (VG0) ⊆ VG1; and

• the restriction of f to interior of an edge is an immersion.

These conditions imply that for eachoriented edge e ∈ EG0, the image

f (e) determines a reduced edge path. A graph map m : RN → G is

called a marking of G. Suppose m : RN → G is a marking and fix

a graph map m′ : G → RN that is homotopy inverse to m. We say

that a graph map f : G→ G is a topological representative of the outer
automorphism ϕ ∈ Out(FN) if the outer automorphism determined

by the homotopy equivalence m′ ◦ f ◦ m : RN → RN is ϕ.
A filtration for a topological representative f : G→ G is an increas-

ing sequence of f –invariant subgraphs ∅ � G0 ⊂ G1 ⊂ · · · ⊂ G` � G.

The rth-stratum in this filtration, denoted by Hr , is the closure of

Gr − Gr−1. Associated to each stratum Hr there is a square matrix

whose row and columns are indexed by the edges in Hr called the

transition matrix Mr , which is non-negative and has integer entries.

The i jth entry of Mr records the number of times the reduced path

f (ei) crosses the edge e j or e−1

j .

Recall, a non-negative square matrix M is called irreducible if for
each i , j, there exists p � p(i , j) such that Mp

i j > 0. We say that

the stratum Hr is irreducible if the associated transition matrix Mr is

irreducible. If Mr is irreducible then it has a unique eigenvalue λr ≥
1 called the Perron-Frobenius eigenvalue, for which the associated

eigenvector is positive. We say that Hr is an exponentially growing
(EG) stratum if λr > 1. We say that Hr is a non-exponentially growing
(NEG) stratum if λr � 1. Finally, we say that Hr is a zero stratum if Mr
is the zero matrix.

1.2. Free factor systems and geometric realizations. A free factor
A < FN is a subgroup of FN such that FN � A ∗ B where B < FN is

a (possibly trivial) subgroup of FN . A free factor is called proper if it
is neither the trivial subgroup nor FN . The conjugacy class of a free

factor A is denoted by [A]. A free factor system F� {[A1], . . . , [Ak]} is
a collection of conjugacy classes of free factors of FN such that

FN � A1 ∗ A2 ∗ · · · ∗ Ak ∗ B

for some representatives Ai
of [Ai] and for some (possibly trivial)

subgroup B < FN .
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A subgraph K ⊆ G of a marked graph G determines a free fac-

tor system F(K) of FN in the following way. Enumerate the non-

contractible components of K by C1, . . . , Ck , fix vertices vi ∈ Ci and

edge paths γi from vi to v (some arbitrary vertex of G). These paths

induce inclusions π1(Ci , vi) → π1(G, v). The conjugacy classes of

the images do not depend on the vi’s nor the γi’s and the collection

{[π1(C1, v1)], . . . , [π1(Ck , vk)]} is a free factor system of π1(G, v). Us-

ing the marking of G we obtain a free factor system F(K) of FN .

There is a natural partial order among free factor systems. Given

free factor systems F0 � {[A1], . . . , [Ak]} and F1 � {[B1], . . . , [B`]}
we say that F0 is contained in F1 (or F1 is an extension of F0) and

write F0 @ F1 if for each i � 1, . . . , k, there exist j ∈ {1, . . . , `} and
g ∈ FN such that Ai < gB j g−1

. An extension F0 @ F1 is called a

single-edge extension if there exists a marked graph G with subgraphs

G0,G1 such thatF(G0) � F0, F(G1) � F1 and G1−G0 is a single edge.

Otherwise, F0 @ F1 is called a multi-edge extension. There are three

types of single-edge extensions. In a circle extension G1 is obtained

from G0 by adding a loop edge. In a barbell extension, a single edge is
attached to two distinct components of G0. Finally, attaching an edge

to the same component of G0 gives a handle extension.
A filtration of FN by free factor systems is an ascending sequence

∅ � F0 @ F1 @ · · · @ Fk � {[FN]} of free factor systems. We say

that a filtration ∅ � F0 @ F1 @ · · · @ Fk � {[FN]} is realized by the

filtration ∅ � G0 ⊂ G1 ⊂ · · · ⊂ G` � G of a marked graph G if for

each i � 1, . . . , k there is an j ∈ {1, . . . , `} such that Fi � F(G j).

1.3. Relative outer automorphisms. Outer automorphisms act on

the set of conjugacy classes of free factors and on the set of free factor

systems. An element ϕ ∈ Out(FN) is irreducible if there does not exist
a proper free factor system Fsuch that ϕF� F; ϕ is fully irreducible
if ϕp

is irreducible for all p ≥ 1. IfF0 @ F1 is a ϕ–invariant extension,
we say ϕ is irreducible with respect to F0 @ F1 if there does not exist

a ϕ–invariant free system F , F0,F1 such that F0 @ F @ F1; ϕ is

fully irreducible with respect to F0 @ F1 if ϕp
is irreducible with respect

to F0 @ F1 for all p ≥ 1. Irreducibility is equivalent to irreducibility

with respect to {[〈1〉]} @ {[FN]}.
We usually work with elements in the finite-index subgroup:

IAN(Z/3) � ker

(
Out(FN) → Aut(H1(FN ,Z/3))

)
.

For elements in this subgroup, periodic phenomena become fixed.

In particular, Handel–Mosher showed that for any ϕ ∈ IAN(Z/3):
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(1) any ϕ–periodic free factor system in FN is fixed by ϕ [20,

Theorem 3.1]; and

(2) any ϕ–periodic conjugacy class in FN is fixed by ϕ [20, Theo-

rem 4.1].

Thus irreducible and fully irreducible are identical notions in this

subgroup.

Of central importance to the theory of relative outer automor-

phisms is the Handel–Mosher Subgroup Decomposition Theorem.

Theorem 1.1 ([18, Theorem D]). Given a finitely generated subgroup
H < IAN(Z/3) and a maximal H–invariant filtration ∅ � F0 @ F1 @
· · · @ Fk � {[FN]}, for each i � 1, . . . , k such that Fi−1 @ Fi is a multi-
edge extension, there is an element ϕi ∈ H that is irreducible with respect
to Fi−1 @ Fi .

Remark 1.2. In fact, a single ϕ ∈ H satisfies the conclusion of the

theorem [9, Theorem 6.6].

We denote the stabilizer in Out(FN) of a free factor system F of

FN by Out(FN ; F). If F� {[A]}, we usually write Out(FN ; A) for this
subgroup.

Suppose A < FN is a free factor and ϕ ∈ Out(FN ; A). Then there

is an automorphism Φ ∈ ϕ such that Φ(A) � A. The outer au-

tomorphism class of the restriction of Φ to A is the same for any

representative of ϕ that fixes A, we denote the resulting outer auto-

morphism by ϕ
��
A ∈ Out(A). Moreover, the assignment ϕ 7→ ϕ

��
A is a

homomorphism from Out(FN ; A) to Out(A) [19, Fact 1.4].
If ϕ ∈ Out(FN) fixes each element of a free factor system F �

{[A1], . . . , [Ak]} then we write ϕ
��
F
to refer to the collection of maps{

ϕ
��
A1
, . . . , ϕ

��
Ak

}
. This happens in particular when ϕ ∈ IAN(Z/3) ∩

Out(FN ; F). If we say ϕ
��
F
has some property (e.g. is atoroidal), we

mean each of the maps ϕ
��
Ai has this property.

1.4. Train tracks and CTs. Train track maps are a type of graphmap

with certain useful features that were first introduced by Bestvina–

Handel in order to study the dynamics of irreducible outer auto-

morphisms of FN . Not every outer automorphism is represented by

a train track map, but they can be represented by a generalization

called a relative train track map [5]. Since their original construction,

train track maps have been improved upon giving finer control over

certain aspects of the maps. For our purpose, we will work with

a completely split train track map (CT) introduced by Feighn–Handel

[14]. The definition of a CT is rather long and technical and so after
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giving the definition a relative train trackmap below (Definition 1.3),

we will only state the relevant properties of a CT needed in the se-

quel (Lemma 1.4) and a they are needed. We also quote the key

result that after passing to a power, every outer automorphism can

be represented by a CT (Theorem 1.5).

A graph map f : G → G induces a derivative map D f : EG → EG
on the set of oriented edges by setting D f (e) equal to the first edge

in the edge path f (e). A turn in G is an unordered pair (e1, e2) of
oriented edges in G where o(e1) � o(e2). A turn (e1, e2) is called

degenerate if e1 � e2, otherwise it is called non-degenerate. A turn

(e1, e2) is called illegal if its image

(
(D f )k(e1), (D f )k(e2)

)
under an

iterate of the derivative map is degenerate for some k ≥ 1, otherwise

it is called legal. An edge path e1e2 . . . en is called legal if each turn

(e−1

i , ei+1) for i � 1, . . . , n − 1 is legal.

Suppose ∅ � G0 ⊂ G1 ⊂ · · · ⊂ G` � G is a filtration of the map

f . We say that a turn (e1, e2) is contained in the stratum Hr if both

edges e1, e2 are in EHr . An edge path γ is called r–legal, if every turn

in γ that is contained in Hr is legal. A connecting path for Hr is a

nontrivial reduced path γ in Gr−1 whose endpoints are in Gr−1 ∩Hr ;

it is taken if it is the subpath of [ f k(e)] for some edge e that belongs

to an irreducible stratum.

Definition 1.3. A topological graph map f : G → G equipped with

a filtration ∅ � G0 ⊂ G1 ⊂ · · · ⊂ G` � G is called a relative train track
map if for each exponentially growing stratum Hr the following hold:

(1) for each edge e ∈ EHr , (D f )k(e) ∈ EHr for all k ≥ 1;

(2) for each connecting path γ for Hr , the path [ f (γ)] is also a

connecting path for Hr ; and

(3) if γ is r–legal, then so is [ f (γ)].

The notion of a geometric stratum for a relative train track map was

introduced and studied by Bestvina–Feighn–Handel [4], and studied

extensively by Handel–Mosher in the CT setting [19]. Suppose ∅ �
G0 ⊂ G1 ⊂ · · · ⊂ G` � G is a filtration for a relative train track

map f : G → G. A stratum Hr is called geometric if there exist

a compact surface S with k + 1 boundary components α0, α1, . . . , αk
and a pseudo-Anosov homeomorphism h : S→ S with the following

properties.

• The homeomorphism h extends to a homotopy equivalence

h : S∪Gr−1→ S∪Gr−1 where S is attached toGr−1 by attaching

the boundary components α1, . . . , αk to k circuits in Gr−1.
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• There is an embedding Gr ↪→ S ∪ Gr−1 that restricts to the

identity on Gr−1 and a deformation retraction d : S ∪ Gr−1 →
Gr such that f d ' dh.

We can extend this notion to subgroups of Out(FN). Suppose H

is a subgroup of Out(FN) and F0 @ F1 is a multi-edge extension

invariant under H. We say the extension is geometric if for each

ϕ ∈ H there is a relative train track map f : G → G with a filtration

∅ � G0 ⊂ G1 ⊂ · · · ⊂ G` � G realizing the filtration for FN such

that the stratum Hr is geometric where F0 � F(Gr−1) and F1 �

F(Gr), without the assumption that the associated homeomorphism

h : S→ S is pseudo-Anosov. We call S a geometric model for ϕ.
The following lemma summarizes the key additional properties

of CT maps that we will use. To state the first of these properties,

we need the following definition. A path ρ in G is a Nielsen path if

[ f k(ρ)] � ρ for some k ≥ 1; it is an indivisible Nielsen path if further it

is does not split as the concatenation of two non-trivial Nielsen paths.

Lemma 1.4. Suppose f : G → G is a CT map with filtration ∅ � G0 ⊂
G1 ⊂ · · · ⊂ G` � G.

(1) If Hr is a non-geometric EG stratum, then there does not exist a
closed Nielsen path ρ ⊂ Gr that intersects Hr nontrivially ([14,

Corollary 4.19 eg(ii)] and [19, Fact 1.42 (1b)]).
(2) If Hr is an NEG stratum, then Hr consists of a single edge e.

Furthermore, either e is fixed, or f (e) � eγ where γ is a nontrivial
cyclically reduced path in Gr−1 ([14, Lemma 4.21]).

The edge e of an NEG stratum is called a fixed edge if f (e) � e, a
linear edge if f (e) � eρ where ρ is a nontrivial Nielsen path, and a

superlinear edge otherwise. We conclude this section by stating the

theorem providing the existence of CT maps.

Theorem 1.5 ([14, Theorem 4.28, Lemma 4.42]). There exist a constant
M � M(N) ≥ 1 such that for any ϕ ∈ Out(FN), and any nested sequence
C of ϕM-invariant free factor systems, there exists a CT map f : G → G
that represents ϕM and realizes C.

2. Geodesic currents

The way we demonstrate that an element of Out(FN) is atoroidal is
by showing that it acts on a certain spacewithout a periodic orbit. The

space we consider is the space of geodesic currents, which naturally

contains the set of conjugacy classes of nontrivial elements of FN . We

describe this space and its key features in this section. More details

can be found in [24].
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Let ∂FN denote the Gromov boundary of FN . The double boundary of
FN is defined to be the set:

∂2FN � (∂FN × ∂FN \ ∆)/∼
where ∼ is the flip relation (x , y) ∼ (y , x), and ∆ is the diagonal.

This set is naturally identified with the set of unoriented bi-infinite

geodesics in R̃N , the universal cover of RN . The group FN acts on

itself by left multiplication, which induces an action of FN on both

∂FN and ∂2FN .

A geodesic current on FN is a non-negative Radon measure on ∂2FN
that is invariant under the action of FN . The space of geodesic cur-

rents on FN , denoted by Curr(FN), is equippedwith theweak-* topol-

ogy. We give more specifics about the topology later.

The following construction is the most natural example of a geo-

desic current. Let g ∈ FN be a nontrivial element that is not a proper

power, i.e., g , hk
for some h ∈ FN , and k > 1. Let (g−∞, g∞) be

the unoriented bi-infinite geodesic labeled by g’s. For any such g we

define the counting current ηg ∈ Curr(FN) as follows. If S ⊂ ∂2FN is a

Borel subset we set:

ηg(S) � #

��S ∩ FN(g−∞, g∞)
�� .

This definition does not depend on the representative of the conju-

gacy class [g] of g, so we will use η[g] and ηg interchangeably. For

an arbitrary g, we write g � hk
where h is not a proper power and

define ηg � kηh . The set of scalar multiples of all counting currents

are called rational currents. An important fact about rational currents

is that they form a dense subset of Curr(FN) [6].
The group Aut(FN) acts by homeomorphisms on Curr(FN) as fol-

lows. An automorphismΦ ∈ Aut(FN), extends to a homeomorphism

ofboth ∂FN and ∂2FN whichwe still denote byΦ, and forµ ∈ Curr(Fn)
we define:

(Φµ)(S) � µ(Φ−1(S))
for any Borel subset S of ∂2FN . The FN–invariance of the measure

implies that the group Inn(FN) of inner automorphisms acts triv-

ially, hence we obtain an action of Out(FN) � Aut(FN)/Inn(FN) on
Curr(FN). On the level of conjugacy classes one can easily verify that

ϕη[g] � ηϕ[g].
The space PCurr(FN) of projectivized geodesic currents is defined

as the quotient of Curr(FN) − {0} where two currents are deemed

equivalent if they are positive scalar multiples of each other. The

space PCurr(FN) endowed with the quotient topology is compact
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[6]. Furthermore, setting ϕ[µ] � [ϕµ] gives a well defined action of

Out(FN) on PCurr(FN).
We will now give more specifics about the topology on Curr(FN).

Let m : RN → G be a marking. Lifting m to the universal covers, we

get a quasi-isometry m̃ : R̃N → G̃ and a homeomorphism m̃ : ∂FN →
∂G̃. Given a reduced edge path γ in

˜G the cylinder set of γ is defined

as

Cylm(γ) �
{
(ξ1, ξ2) ∈ ∂2FN | γ ⊂ [m̃(ξ1), m̃(ξ2)]

}
,

where [m̃(ξ1), m̃(ξ2)] is the bi-infinite geodesic from m̃(ξ1) to m̃(ξ2)
in

˜G and containment is for either orientation.

Let γ be a reduced edge path in G and let γ̃ be a lift of γ to G̃. We

define the number of occurrences of γ in µ as

〈γ, µ〉m � µ(Cylm(γ̃)).
As µ is invariant under the action of FN , the quantity µ(Cylm(γ̃))
does not depend on the choice of the lift γ̃ of γ. Hence, 〈γ, µ〉m is

well defined. Themarked graphwill always be clear from the context

and in what follows we drop the letter m from the notation and use

Cyl(γ̃) and 〈γ, µ〉.
Cylinder sets forma subbasis for the topology of the double bound-

ary ∂2FN and play an important role in the topology of currents. In

[24], it was shown that a geodesic current is uniquely determined by

the set of values {〈γ, µ〉}γ as γ varies over the set of all reduced edge

paths in G.

Furthermore, defining the simplicial length of a current µ to be

|µ| � ∑
e∈E+G〈e , µ〉 we have the following characterization of lim-

its in PCurr(FN).
Lemma 2.1 ([24, Lemma 3.5]). Suppose ([µn]) ⊂ PCurr(FN) is a se-
quence and [µ] ∈ PCurr(FN). Then

lim

n→∞
[µn] � [µ] if and only if lim

n→∞

〈γ, µn〉
|µn |

�
〈γ, µ〉
|µ|

for each reduced edge path γ in G.

The value |µ| does depend on the marked graph, but as before, the

marked graph will always be clear from the context and so we omit

it from the notation. It follows immediately from Lemma 2.1 that the

occurrence function µ 7→ 〈µ, γ〉 and the simplicial length function

µ 7→ |µ| are continuous and linear on Curr(FN) [24, Proposition 5.9].

Given a free factor A < FN , let ι : A → FN be the inclusion map.

There is a canonical A–equivariant embedding ∂A ⊂ ∂FN which
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induces an A–equivariant embedding ∂2A ⊂ ∂2FN . Let Curr(A)
and Curr(FN) be the corresponding spaces of currents. There is a

natural inclusion ιA : Curr(A) → Curr(FN) defined by pushing the
measure forward via the FN action such that for each g ∈ A we have

ιA(ηg) � ηι(g), see [24, Proposition-Definition 12.1].

3. Pushing past multi-edge extensions

As stated in the introduction, the strategy for proof of Theorem A

is to work from the bottom up using amaximalH–invariant filtration

∅ � F0 @ F1 @ · · · @ Fk � {[FN]}. Assuming that there is an element

ϕ ∈ Hsuch that ϕ
��
Fi−1

is atoroidal, we either find a nontrivial element

g ∈ FN whose conjugacy class is fixed by a finite index subgroup of

H, or in the absence of such an element, we produce an element

ϕ̂ ∈ H such that ϕ̂
��
Fi

is atoroidal.

There are two cases depending onwhether the extensionFi−1 @ Fi
is multi-edge or single-edge. In this section we deal with the multi-

edge case; the single-edge case takes up Section 5.

The multi-edge case follows from recent work of Handel–Mosher

and Guirardel–Horbez. We collect these results here and show how

they apply to this setting.

Theorem 3.1. Suppose H < IAN(Z/3) < Out(FN). Let F0 @ F1 be an
H–invariant multi-edge extension, and assume that Hcontains an element
which is fully irreducible with respect to the extension F0 @ F1. Then one
of the following holds.

(1) Hcontains an elementψwhich is fully irreducible andnon-geometric
relative to F0 @ F1([21, Proposition 2.2 and 2.4]); or

(2) there is a common geometric model for all ϕ ∈ H and hence every
element of Hfixes the conjugacy class corresponding to a boundary
curve ([21, Theorem J]).

When F0 � ∅, the above theoremwas originally proved by the sec-

ond author [32]. The general case above is also proved by Guirardel–

Horbez using the action of the relative outer automorphism group

on a δ–hyperbolic complex which is a relative version of Dowdall–

Taylor’s co-surface graph [12]. The existence and relevant properties

of this complex, which we will also need, is the following.

Theorem 3.2. [15] Suppose F@ {[FN]} is a multi-edge extension. There
exist a δ–hyperbolic graphZFwith an isometric Out(FN ; F) action so that
an element ϕ ∈ Out(FN ; F) acts as a hyperbolic isometry of ZF if and
only if ϕ is fully irreducible and non-geometric relative to F@ {[FN]}.
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Asa consequenceofTheorem3.1,when considering themulti-edge

extensionFi−1 @ Fi which is part of amaximalH–invariant filtration,

if there does not exist a nontrivial element g ∈ FN whose conjugacy

class is in Fi and is fixed by a finite index subgroup of H, then there

is a fully irreducible and non-geometric element ϕ. Assuming ϕ
��
Fi−1

is atoroidal, so is ϕ
��
Fi

as the next lemma states, allowing us to push

past a multi-edge extension.

Lemma 3.3. Suppose ϕ ∈ Out(FN) is fully irreducible and non-geometric
with respect to the extension F0 @ F1 and the restriction of ϕ to F0 is
atoroidal. Then the restriction of ϕ to F1 is atoroidal too.
Proof. This is a straightforward consequence of Lemma 1.4(1). In-

deed, let f : G → G be a CT map that represents ϕM
and realizes

C � (F0,F1), where M is the constant from Theorem 1.5. Assume

M is so that ϕM ∈ IAN(Z/3). Let Hr be the stratum correspond-

ing to the extension F0 @ F1, i.e., F0 � F(Gr−1), F1 � F(Gr) and
Hr � Gr − Gr−1.

Any ϕ–periodic conjugacy class contained in F1 is represented

by a closed Nielsen path ρ ⊂ Gr . As Hr is a non-geometric EG

stratum, Lemma 1.4(1) implies that ρ ⊂ Gr−1, which contradicts the

assumption that ϕ
��
F0

is atoroidal. �

Combining the Handel–Mosher Subgroup Decomposition Theo-

rem (Theorem 1.1) with Theorems 3.1 and 3.2, we get the following

corollary which will be required when pushing past single-edge ex-

tensions.

Corollary 3.4. Suppose H< IAN(Z/3) < Out(FN). Let
∅ � F0 @ F1 @ · · · @ Fk � {[FN]}

be a maximal H–invariant filtration by free factor systems such that each
multi-edge extension is non-geometric. Then there exists an element ϕ ∈ H

such that for each i � 1, . . . , k where Fi−1 @ Fi is a multi-edge extension,
ϕ is irreducible and non-geometric with respect to Fi−1 @ Fi .

Proof. The proof is the same as the proof of [9, Theorem 6.6], as

commented inRemark 1.2. Thekeypoint is that Theorems1.1, 3.1 and

3.2 provide for the existence of δ–hyperbolic spaces corresponding

to each multi-edge extension and for each an element which acts as

a hyperbolic isometry. The main theorem in [9] shows that under

these hypotheses, there is a single element in Hwhich is acts as a

hyperbolic isometry in each. Applying Theorem 3.2 again completes

the proof. �



16 M. CLAY AND C. UYANIK

4. Dynamics on single-edge extensions

In this section we analyze the dynamics of outer automorphisms

that preserve a single-edge extension of free factor systems F0 @ F1.

The main result of this section is that in the most interesting case

of a handle extension, if ϕ preserves the extension and acts as an

atoroidal element on F0, then ϕ acts on the space of currents on F1

with generalized north-south dynamics (Theorem 4.15).

4.1. Almost atoroidal elements. To begin, we characterize outer au-

tomorphisms preserving a single-edge extension F0 @ F1 whose

restriction to F0 is atoroidal.

Proposition 4.1. Suppose F0 @ F1 is a single-edge extension of free factor
systems that is invariant under ϕ ∈ IAN(Z/3). If ϕ

��
F0

is atoroidal, then
one of the following holds.

(1) The restriction ϕ
��
F1

is atoroidal.
(2) There exists a nontrivial g ∈ FN such that g, its inverse, and its

iterates are the only nontrivial conjugacy classes inF1 fixed by ϕ
��
F1

.
Furthermore, there is some [A] ∈ F0 such that either:
• F1 � F0 ∪ {[〈g〉]} (circle extension); or
• F1 �

(
F0 − {[A]}

)
∪{[A ∗ 〈g〉]} (handle extension).

Proof. Let f : G → G be a CT that represents ϕM
and realizes C �

(F0,F1), where M is the constant from Theorem 1.5. Let Hr be the

NEG stratum corresponding to the extension F0 @ F1, i.e., F0 �

F(Gr−1), F1 � F(Gr) and Hr � Gr − Gr−1. By Lemma 1.4(2), Hr
consists of a single edge e.

First, suppose that e is a linear edge, i.e., f (e) � eρ where ρ is

a nontrivial closed Nielsen path in Gr−1. Then the conjugacy class

corresponding to ρ is fixed by ϕ and is in F0, contradicting the

assumption ϕ
��
F0

is atoroidal. Hence this case does not occur.

Next, suppose that e is a fixed edge. If o(e) � t(e), we claim that

the conjugacy class g that corresponds to the loop e is the only fixed

conjugacy class up to taking powers and its inversion. Indeed, any

other conjugacy class [h] in F1 is represented by a cyclically reduced

loop of the form ea1α1ea2 . . . αk where the αi’s are reduced loops in

Gr−1 based at the common vertex o(e) � t(e) and the ai’s are non-zero

integers. If ϕMp[h] � [h] for some p ≥ 1, then [ f p(ea1α1ea2 . . . αk)] �
σea1α1ea2 . . . αkσ−1

for some reduced edge path σ (note, the image

path is reduced except possibly at σ · ea1
or αk · σ−1

). Since f (e) � e
and f preserves Gr−1, f p

must permute the αi’s (up to homotopy
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rel endpoints). Hence some power of f fixes each αi which is a

contradiction as the restriction of ϕ to F0 is atoroidal.

If o(e) , t(e), we claim that there can be atmost one fixed conjugacy

class in F1 up to taking powers and inversion. Indeed, suppose

h1, h2 ∈ FN are not proper powers, [h1] and [h2] are in F1, and are

fixed by ϕ. As the restriction of ϕ to F0 is atoroidal, we have that [h1]
is represented by a cyclically reduced loop ea1α1ea2 . . . αk where the

αi’s are reduced paths in Gr−1 and each ai ∈ {−1, 1}. Similarly, [h2] is
represented by a cyclically reduced loop eb1β1eb2 . . . β` where again

the βi’s are reduced paths in Gr−1 and each bi ∈ {−1, 1}. As in the

previous case of a loop, some power of f fixes each αi and βi (up to

homotopy rel endpoints). If there is some i such that ai , ai+1, then

the path αi is closed and represents a conjugacy class in F0 which is

ϕ–periodic, contradicting the assumption that the restriction of ϕ to

F0 is atoroidal. Similarly for the bi’s. Thus, after possibly replacing

h1 or h2 by their inverse, we have that each ai and bi equals 1. If there

exist i , j such that αi , α j , then the nontrivial closed loop αiα−1

j is

fixed by this power of f and contained in Gr−1, again contradicting

the assumption that the restriction of ϕ to F0 is atoroidal. Thus

the αi’s are all the same path α and since h1 is not a proper power,

we have that [h1] is represented by the cyclically reduced path eα.
Similarly [h2] is representedby the cyclically reducedpath eβ. Finally,
if α , β, then the nontrivial closed loop αβ−1

is fixed by a power of

f , again contradicting the assumption that the restriction of ϕ to F0

is atoroidal. Hence [h1] � [h2].
Lastly, in the remaining case that e is superlinear, there is noNielsen

path that crosses e [19, Fact 1.43], hence the restriction of ϕ to F1 is

atoroidal as well.

In all cases, we see that ϕ has at most one fixed conjugacy class

up to taking powers and inversion which proves the first part of the

theorem. The last assertion for the second item follows from the

fact that the path representing a possible fixed g crosses the edge e
exactly once, see for example [4, Corollary 3.2.2]. �

4.2. North-south dynamics for atoroidal elements. The second au-

thor recentlyproved that atoroidal elements ofOut(FN) act onPCurr(FN)
with north-south dynamics in the following sense.

Theorem 4.2 ([33, Theorem 1.4]). Let ϕ ∈ Out(FN) be an atoroidal outer
automorphism of a free group of rank N ≥ 3. Then, there are simplices
∆+, ∆− in PCurr(FN) such that ϕ acts on PCurr(FN) with north-south
dynamics from ∆− to ∆+. Specifically, given open neighborhoods U of ∆+



18 M. CLAY AND C. UYANIK

and V of ∆− there exists M > 0 such that ϕn(PCurr(FN) − V) ⊂ U, and
ϕ−n(PCurr(FN) −U) ⊂ V for all n ≥ M.
We also need the following statement regarding the behavior of

the length of a current under iteration of ϕ. In this statement, we

assume ϕ ∈ Out(FN) satisfies the hypotheses of Theorem 4.2 and ∆−
is the ϕ–invariant simplex in PCurr(FN) appearing in the statement

of that theorem.

Lemma 4.3 (cf. [26, Corollary 4.13]). For each C > 0 and neighborhood
V of ∆− there is a constant M > 0 such that if [µ] < V , then |ϕnµ| ≥ C |µ|
for all n ≥ M.
A similar statement appears as Lemma 4.16. The proof given there

directly adapts to prove this statement.

4.3. Completely split goodness of paths and currents. To deal with

single-edge extensions, we need similar statements for an element of

Out(FN) that restricts to an atoroidal element on a co-rank 1 free factor
of FN , i.e., a free factor A < FN for which there exists a nontrivial

g ∈ FN such that FN � A ∗ 〈g〉. This is the purpose of this subsection
and the next where we describe the necessary tools to prove Theo-

rem 4.15. The majority of the work in the next two section modifies

the constructions and argument in [33] to deal with the fixed free

factor 〈g〉. A casual reader can review the main statements corre-

sponding to the two above, Theorem 4.15 and Lemma 4.16, and skip

ahead to Section 5.

Standing assumption 4.4. Suppose A < FN is a co-rank 1 free factor and
ϕ ∈ IAN(Z/3) ∩Out(FN ; A) is such that ϕ

��
A is atoroidal. Let ∆+ and ∆−

be the inclusion to PCurr(FN) of the ϕ–invariant simplices in PCurr(A)
from Theorem 4.2 for ϕ

��
A. Assume ϕ is not atoroidal and let [g] be the fixed

conjugacy class in FN given by Proposition 4.1(2). Let

∆̂− � {[tηg + (1 − t)µ−] | [µ−] ∈ ∆−, t ∈ [0, 1]}
and

∆̂+ � {[tηg + (1 − t)µ+] | [µ+] ∈ ∆+, t ∈ [0, 1]}.
Throughout the rest of this section and the next, we will further

assume the element ϕ is represented by a CT map f : G → G in

which the fixed conjugacy class [g] is represented by a loop edge

e in G which is fixed by f . The complement of the edge e in G is

denoted G′. This assumption is not a restriction (upon replacing ϕ
by a sufficient power to ensure some CT). Indeed, if in the proof of

Proposition 4.1 the edge e is a loop edge we are done. Otherwise, the
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conclusion of Proposition 4.1 says that [g] is a free factor so we can

take a CT map f ′ : G′ → G′ that represents ϕ
��
A and let G � G′ ∨ e

where the wedge point is at an f ′-fixed vertex and e is a loop edge

representing [g]. There is an obvious extension to a map f : G→ G
representing ϕ ∈ Out(FN) that is a CT map. Existence of a fixed

vertex is guaranteed by the properties of CT’s, see [14, Definition 3.8

and Lemma 3.9].

A decomposition of a path γ in G into subpaths γ � γ1 · γ2 · . . . · γn
is called a splitting if for all k ≥ 0 we have

[ f k(γ)] � [ f k(γ1)][ f k(γ2)] . . . [ f k(γn)].

In other words, any cancellation takes place within the images of the

γi’s. We use the “·” notation for splittings. A path γ is said to be

completely split if it has a splitting γ1 · γ2 · . . . · γn where each γi is

either an edge in an irreducible stratum, an indivisible Nielsen path

or a maximal taken connecting path in a zero stratum. These type of

subpaths are called splitting units. We refer reader to [14] for complete

details andnote that the assumption onϕ above guarantees that there

are no exceptional paths. Of importance is that if γ � γ1 ·γ2 · . . . ·γn is

a complete splitting, then [ f (γ)] also has a complete splitting where

the units refine [ f (γ)] � [ f (γ1)] · [ f (γ2)] · . . . · [ f (γn)] [14, Lemma 4.6].

We say that a splitting unit σ is expanding if |[ f k(σ)]| → ∞ as k →∞.

Recall | � | denotes the simplicial length of a path.

Definition 4.5. For an edge path γ in G, a maximal splitting is a split-
ting γ � β0 ·α1 · β1 · . . . ·αn · βn where each αi has a complete splitting,

βi is nontrivial for i � 1, . . . , n − 1 and

∑n
i�1
|αi | is maximized. Using

a maximal splitting, we define the completely split goodness of γ as:

g(γ) � 1

|γ |

n∑
i�1

|αi |.

If γ is a cyclically reduced circuit inG, setg(γ) to be themaximumof

g(γ′)over all cyclic permutations of γ. For any conjugacy class h ∈ FN ,

let γh be the unique cyclically reduced circuit in G that represents

[h]. We define the completely split goodness of a conjugacy class [h]
as g([h]) � g(γh). It is not clear that g can extend in a continuous

way to Curr(FN). What we can do is to define a continuous function

g : Curr(FN) → R that agrees with g on completely split circuits and

provides a lower bound on g in general. The first ingredient is the

bounded cancellation lemma.
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Lemma 4.6. [10] Let f : G → G be a graph map. There exists a constant
C f such that for any reduced path γ � γ1γ2 in G one has

|[ f (γ)]| ≥ |[ f (γ1)]| + |[ f (γ2)]| − 2C f .

Let C0 be the maximum length of a Nielsen path or a taken con-

necting path in a zero stratum in G′. Finiteness of C0 follows as ϕ
��
A

is atoroidal and zero strata are contractible. This same C0 also works

for f k
for all k ≥ 1. We now replace the CT map f with a suitable

power, but continue to use f , so that for each expanding splitting unit

σ, we have

��[ f (σ)]�� ≥ 3(2C0 + 1). Let C f be the bounded cancellation

constant for this new f and C � max{C0 + 1, C f }.
Proposition 4.7. Under the standing assumption 4.4, the following hold:

(1) If a path γ in G′ is completely split and |γ | ≥ C0 + 1, then:
sum of lengths of expanding splitting units

|γ | ≥ 1

2C0 + 1

.

(2) If a path γ in G′ is completely split and |γ | ≥ C0 + 1, then:
|[ f (γ))]| ≥ 3|γ |.

(3) Let γ be any path in G and suppose γ0 · γ1 · γ2 is a subpath of γ
where each γi has a complete splitting. If |γ0 |, |γ2 | ≥ C then γ has
a splitting γ � γ′ · γ1 · γ′′.

Proof. The proof of (1) is similar to that of [33, Proposition 3.9]. Prop-

erties of CT’s imply that γ has a splitting γ � β0 · α1 · β1 · . . . · αn · βn
where each αi has a complete splitting into edges in EG strata (in par-

ticular into expanding splitting units) and each β j is either a Nielsen

path or a taken connecting path in a zero stratum. Since |γ | ≥ C0 we

must have n > 0. As |αi | ≥ 1 for all i and |β j | ≤ C0 for all j we have:

|γ |∑n
i�1
|αi |

� 1 +

∑n+1

j�0
|b j |∑n

i�1
|αi |
≤ 1 +

(n + 1)C0

n
≤ 2C0 + 1.

Therefore:

sum of lengths of expanding splitting units
|γ | ≥

∑n
i�1
|αi |
|γ | ≥ 1

2C0 + 1

.

We get (2) by noting that |[ f (αi)]| ≥ 3(2C0 + 1)|αi | for all i and so

by (1):

|[ f (γ)]| ≥
n∑

i�1

|[ f (αi)| ≥ 3(2C0 + 1)
n∑

i�1

|αi | ≥ 3|γ |.
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For (3) we first observe that by (2), we have |[ f (γ0)]|, |[ f (γ2)]| ≥
3C ≥ C f + C0 + C. Decompose γ as a concatenation γ � γ′

0
γ0γ1γ2γ′

2
.

Applying Lemma 4.6 to γ′ � γ′
0
γ0 we get that at most C f edges of

[ f (γ′
0
)] cancels with [ f (γ0)] and therefore, the terminal segment of

length C + C0 in [ f (γ0)] remains in [ f (γ′)]. As [ f (γ0)] is completely

split, we see that [ f (γ′)] � γ′′
0
γ̂0 where γ̂0 ⊆ [ f (γ0)] is completely

split and |γ̂0 | ≥ C. Likewise for γ′′ � γ2γ′
2
we see that [ f (γ′′)] � γ̂2γ′′

2

where γ̂2 ⊆ [ f (γ2)] is completely split and |γ̂2 | ≥ C.

As γ0 · γ1 · γ2 is a splitting, we have [ f (γ)] � [ f (γ′)][ f (γ1)][ f (γ′′)].
Since the path γ̂0 · f (γ1) · γ̂2 is a subpath of [ f (γ)] satisfying the

same hypotheses as γ0 · γ1 · γ2 did for γ, we can repeatedly apply this

argument to get [ f k(γ)] � [ f k(γ′)][ f k(γ1)][ f k(γ′′)] for all k ≥ 1 and

so γ � γ′ · γ1 · γ′′ is a splitting. �

Let Pcs denote the set of paths in G that have a complete splitting

comprised of exactly 2C + 1 splitting units. Given γ ∈ Pcs we have

γ � σ1 · σ2 · . . . · σ2C+1 where each σi is a splitting unit and we define

γ̌ � σC+1, i.e., the middle splitting unit. It is possible that distinct

paths γ, γ′ ∈ Pcs could be nested, i.e., γ′ ( γ. For instance, if the

first or last unit in γ is either an indivisible Nielsen path or a taken

connecting path in a zero stratum then it is possible that γ has a

completely split subpath γ′with 2C + 1 terms where the first and/or

last terms are either edges in the indivisible Nielsen path or a smaller

taken connecting zero path. For such γ̌ � γ̌′. We need to keep track

of such behavior and so define:

Pcs(γ) � {γ′ ∈ Pcs | γ′ ( γ and γ̌′ � γ̌}.
We can now define a version of completely split goodness for cur-

rents.

Definition 4.8. For any non-zero µ ∈ Curr(FN) define the completely
split goodness of µ by:

g(µ) � 1

|µ|
∑
γ∈Pcs

©­«〈γ, µ〉|γ̌ | −
∑

γ′∈Pcs(γ)
〈γ′, µ〉|γ̌ |ª®¬ . (4.1)

Observe thatgdescends to awell-defined functiong : PCurr(FN) →
R. The important properties of g are summarized in the following

lemma.

Lemma 4.9. The map g : Curr(FN) − {0} → R is continuous. Further
for any rational current ηh :

(1) g(ηh) � 1 if ηh is represented by a completely split circuit; and
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(2) g(γh) ≥ g(ηh) where γh is the unique reduced circuit in G that
represents [h].

Proof. The continuity is clear as it is defined using linear combination

of continuous functions (Lemma 2.1).

For the first assertion, suppose h is represented by a completely

split cyclically reduced circuit γ � σ1 ·σ2 · . . . ·σn . For each i, the path:

γi � σi−C · · · · · σi−1 · σi · σi+1 · · · · · σi+C

where the indices are taken modulo n is in Pcs and has γ̌i � σi . Thus

each splitting unit σi in γ is the middle term of completely split edge

path of length 2C + 1. The maximal such path contributes to the

right-hand side of (4.1) the number of edges of σi .

The second assertion follows from Proposition 4.7(3). �

4.4. Incorporating north-south dynamics from lower stratum. We

need to work with the inverse outer automorphism ϕ−1
as well. We

will denote the CT map for ϕ by f+ : G+→ G+. As in Section 4.3, we

assume that there is an edge e+ inG+ representing the fixed conjugacy

class [g] and we will denote the complement of e+ in G+ by G′+. The
corresponding completely split goodness function is denoted by g+.

For ϕ−1
, we denote the corresponding objects by f− : G− → G−, e−,

G′− and g−. Let us denote the total length of subpaths of γ that lie

in G′+ by |γ |′, and by abuse of notation we denote the corresponding

length functions on G− and G′− with | � | and | � |′ as well, their use will

be clear from context.

Notice that any path γ in G+ has a splitting γ � α0 · ek1

+ · α1 · . . . ·
ekm
+ · αm where each αi is a closed path in G′+ which is nontrivial for

i � 1, . . . ,m − 1 and each ki is a nonzero integer. This follows as

f+(e+) � e+ and f+(G′) ⊆ G′. If γ is not a power of e+ we define:

g′+(γ) �
∑m

i�0
|αi |g+(αi)∑m
i�0
|αi |

.

In other words, we are measuring the proportion of γ in G′ that is
completely split. There is a similar discussion for paths in G− andwe

define g′− analogously.
Given h ∈ FN , we let γ+h and γ−h respectively denote the unique

cyclically reduced circuits in G+ and G− respectively that represent

[h]. The following proposition summarizes the key properties of

g′+ and how it will be used to detect how close a current is to the

attracting simplices.
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Proposition 4.10. Under the standing assumption 4.4, the following hold
for all h ∈ FN that is not conjugate to a power of g.

(1) For any open neighborhood U+ of ∆+ there exists a 0 < δ < 1 and
M > 0 such that ϕn[ηh] ∈ U+ for all n ≥ M if:

g′+(γ+h )
|γ+h |

′

|γ+h |
> δ.

(2) For any ε > 0 and L ≥ 0 there exists a 0 < δ < 1 and M > 0 such
that for each n ≥ M there is a [µ] ∈ ∆+ with:���� 〈α, [ f n

+ (γ+h )]〉
|[ f n

+ (γ+h )]|′
−
〈α, µ〉
|µ|

���� < ε
for every reduced path α in G′+ of length at most L if g′+(γ+h ) > δ.

Proof. Bothof these statements canbeprovedusingarguments almost

identical to [27, Lemma 6.1] (see also [33, Lemma 3.17]).

For (1), the lower bound on this ratio implies thatmost of the length

of γ+h comes from completely split subpaths in G′+. The argument

in [27, Lemma 6.1] converts this notion to having powers that are

close to currents in ∆+.

For (2), the lower bound on g′+ implies that most of the length of

γ+h contained in G′+ comes from completely split subpaths in G′+. The
argument in [27, Lemma 6.1] converts this notion to having powers

that almost agree with currents in ∆+ on most subpaths of G′+. �

There of course are analogous statements for g′−.

Lemma 4.11. Under the standing assumption 4.4, given 0 < δ < 1 and
K ≥ 0, there exists an M > 0 such that for all h ∈ FN that is not conjugate
to a power of g either:

g′+([ f n
+ (γ+h )]) > δ and |[ f

n
+ (γ+h )]|

′ ≥ K |γ+h |
′
; or

g′−([ f n
− (γ−h )]) > δ and |[ f

n
− (γ−h )]|

′ ≥ K |γ−h |
′

for all n ≥ M.

Proof. Since the restrictions of f+ to G′+ and f− to G′− are atoroidal,

the result essentially follows from [33]. Indeed, writing:

γ+h � α0 · ek1

+ · α1 · . . . · ekm
+ · αm

γ−h � β0 · ek1

− · β1 · . . . · ekm
− · βm

we have that [33, Lemma 3.19] provides the existence of an M0

such that for each pair {αi , βi} we have that one of g+([ f M0

+ (αi)]) or
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g−([ f M0− (βi)]) is at least 1

2
. Let J ⊆ {0, 1, . . . ,m} be the subset where

the first alternative occurs. Let L ≥ 1 be such that
1

L |[ f M0(αi)]| ≤
|[ f M0(βi)]| ≤ L |[ f M0(αi)]| for each i.
Suppose that

∑
i∈ J |[ f M0(αi)]| ≥ 1

2

∑m
i�0
|[ f M0(αi)]|. Then:

g′+([ f M0

+ (γ+h )]) �
∑m

i�0
|[ f M0

+ (αi)]|g+([ f M0

+ (αi)])∑m
i�0
|[ f M0

+ (αi)]|

≥ 1

2

∑
i∈ J |[ f M0

+ (αi)]|g+([ f M0

+ (αi)])∑
i∈ J |[ f M0

+ (αi)]|

≥ 1

4

.

Otherwise we have

∑
i<J |[ f M0(αi)]| ≥ 1

2

∑m
i�0
|[ f M0(αi)]| and so:∑

i<J

|[ f M0(βi)]| ≥
1

L

∑
i<J

|[ f M0(αi)]|

≥ 1

2L

m∑
i�0

|[ f M0(αi)]| ≥
1

2L2

m∑
i�0

|[ f M0(βi)]|.

A similar calculation in this case shows that g′−([ f M0− (γ−h )]) ≥
1

4L2
in

this case.

Next, the proof of [33, Lemma 3.16] provides the existence of an

M1 such that if g′±(γ) ≥ 1

4L2
then g′±([ f n

± (γ)]) > δ for n ≥ M1. Finally,

the proof of [33, Lemma 3.14] provides the existence of an M2 such

that if g′±(γ) > 0, then g′±([ f n
± (γ)]) > g′±(γ) for all n ≥ M2. Hence for

M � M0M1 + M2 we have that the first conclusion of the alternative

holds.

The second conclusion of the alternative follows from the proof

of [33, Lemma 3.16] as well. Indeed, in this lemma, it is shown that

for each 0 < δ′ < 1 there is a λ > 0 such that if g±(γ) ≥ δ′ where γ
is a path in G′± then | f n

± (γ)| ≥ 2
nλ |γ |. The argument now proceeds

like above using a possibly larger M. �

Combining the two previous statements, we can show north-south

dynamics onPCurr(FN) outside of a neighborhood of the fixed point

[ηg].
Proposition 4.12. Under the standing assumption 4.4, given open neigh-
borhoodsU± of∆± andW of [ηg] there is an M > 0 such that for any rational
current [ηh] ∈ PCurr(FN) −W , either ϕn[ηh] ∈ U+ or ϕ−n[ηh] ∈ U− for
all n ≥ M.
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Proof. To begin, we observe that

〈e± ,µ〉
|µ| � 1 if and only if [µ] � [ηg].

Hence by continuity of 〈e+, �〉 and compactness of PCurr(FN), there
is an 0 < s < 1 such that

〈e± ,µ〉
|µ| ≤ 1 − s for [µ] < W .

Let 0 < δ0 < 1 and M0 be the maximum of constants from Propo-

sition 4.10(1) using both U+ and U−. Set δ �
√
δ0 and K > 1 large

enough so that
K

K+1/s >
√
δ0. Finally, let M1 be the constant from

Lemma 4.11 using these constants. Suppose that [ηh] < W and with-

out loss of generality assume that the first alternative of Lemma 4.11

holds for h. As |γ+h | � |γ
+

h |
′ + 〈e+, γ+h 〉 we get |γ+h |

′/|γ+h | ≥ s and so

〈e+ ,γ+h 〉
|γ+h |′

≤ 1−s
s < 1

s .

Therefore we find:

|[ f M1

+ (γ+h )]|
′

|[ f M1

+ (γ+h )]|
�

|[ f M1

+ (γ+h )]|
′

|[ f M1

+ (γ+h )]|′ + 〈e+, γ
+

h 〉
�

1

1 +
〈e+, γ+h 〉
|[ f M1

+ (γ+h )]|′

≥ 1

1 +
〈e+, γ+h 〉
K |γ+h |′

≥ 1

1 +
1

Ks

�
K

K + 1/s >
√
δ0.

And thus:

g′+([ f M1

+ (γ+h )])|[ f
M1

+ (γ+h )]|
′

|[ f M1

+ (γ+h )]|
> δ

√
δ0 � δ0.

Hence by Proposition 4.10(1) we have ϕn[ηh] ∈ U+ for n ≥ M �

M0 + M1. �

In order to promote Proposition 4.12 to generalized north-south

dynamics everywhere, we need to know that there are contracting

neighborhoods. This is content of the next two lemmas and where

we need the notion of completely split goodness for currents and

Lemma 4.9. We have one lemma dealing with neighborhoods of ∆±
and one lemma for neighborhoods of ∆̂±.

Lemma 4.13. Under the standing assumption 4.4, given open neighbor-
hoods U± of ∆± of ∆± there are open neighborhoods U′± ⊆ U± of ∆± and
such that ϕ±1(U′±) ⊆ U′±.

Proof. We first observe that for any point in [µ] ∈ ∆+, the completely

split goodness g+([µ]) � 1. This is because any such point is a linear

combinationof extremal points and extremal points aredefinedusing
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limits of edges [33, Proposition 3.3 and Definition 3.5], and as [ f n(e)]
is completely split for all n ≥ 1. Likewise g−([µ]) � 1 for any [µ] ∈ ∆−.

Using these observations the conclusion of the lemma follows from

the proofs of Lemma 4.11 and Proposition 4.12. To begin, given a

neighborhood U+ of ∆+ pick a neighborhood U0

+ ⊂ U+ such that for

all [µ] ∈ U0

+ we have g(µ) > δ and 〈e+ ,µ〉|µ| < s for some δ > s > 0. Let

0 < δ0 < 1 and M0 be the constants from Proposition 4.10(1) for U0

+.

Given [ηh] ∈ U0

+ we find using Lemma 4.9:

g′+(γ+h ) ≥ g
′
+(γ+h )

|γ+h |
′

|γ+h |
� g+(γ+h ) −

〈e+, γ+h 〉
|γ+h |

≥ g+(ηh) −
〈e+, ηh〉
|ηh |

> δ − s .

As mentioned in the proof of Lemma 4.11, there is now an M1 such

that g′+([ f n
+ (γ+h )]) >

√
δ0 for all n ≥ M1. Combining now with the

proof of Proposition 4.12, for a slightly larger M1, we have that

|[ f n
+ (γ+h )]|

′

|[ f n
+ (γ+h )]|

>
√
δ0 as well for n ≥ M1. By choice of δ0, this shows

ϕM[ηh] ∈ U0

+ for M � M0 + M1 and any rational current [ηh] ∈ U0

+.

As rational currents are dense, we get ϕM(U0

+) ⊆ U0

+.

Now set:

U′+ � U0

+ ∩ ϕ(U0

+) ∩ · · · ∩ ϕM−1(U0

+).

As ϕ(∆+) � ∆+, U′+ is a neighborhood of ∆. Clearly U′+ ⊆ U0

+ ⊆ U+

and ϕ(U′+) ⊆ U′+ by construction.

A symmetric argument works for a neighborhood of ∆−. �

Lemma 4.14. Under the standing assumption 4.4, given open neighbor-
hoods V̂± of ∆̂± there are open neighborhoods V̂′± ⊆ V̂± of ∆̂± such that
ϕ±1(V̂′±) ⊆ V̂′±.

Proof. Given [µ] ∈ PCurr(FN), a collection of reduced edge paths P

in somemarked graph G and an ε > 0 determines an open neighbor-

hood of [µ] in PCurr(FN):

NG([µ],P, ε) �
{
[ν] ∈ PCurr(FN) |

���� 〈γ, ν〉|ν | − 〈γ, µ〉|µ| ���� < ε, ∀γ ∈ P}
.

For a subset X ⊆ PCurr(FN), we define NG(X,P, ε) as the union of

NG([µ],P, ε) over all [µ] ∈ X.
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By P+(L)we denote the set of all reduced edge paths contained in

G′+ with length at most L. We set P̂+(L) � P+(L) ∪ {e+}. We have⋂
L→∞, ε→0

NG+
(∆̂+, P̂+(L), ε) � ∆̂+.

This follows as for any [µ] ∈ ∆+, 〈γ, µ〉 � 0 for any reduced edge

path not contained in G′+ and as [µ] � [ηg] if and only if 〈e+, µ〉 � |µ|.
There is a similar statement for ∆̂−.

Let L and ε be such that NG+
(∆̂+, P̂+(L), ε) ⊆ V̂+. Let δ0 and M0

be the constants from Proposition 4.10(2) using this L and ε. Set

V̂′+ � NG+
(∆̂+, P̂+(L), ε) and let 0 < δ0 < 1 be such that g(µ) > δ0 for

[µ] ∈ V̂′+. By replacing δ0 with a smaller positive number and M0

with a larger constant, we can assume that δ0 and M0 also satisfy the

conclusion of Proposition 4.10(1) for the neighborhood V̂′+ as well.

We will now show that there is a constant M such that for any

rational current [ηh] ∈ V̂′+ we have ϕM[ηh] ∈ V′+. Arguing as in

Lemma 4.13 the present lemma follows. There are two cases: γ+h has

a definite fraction in G′+; or not, i.e., [ηh] is close to [ηg].
Thefirst case is similar toLemma4.13. Fix an0 < s < δ0. If [µ] ∈ V̂′+

and

〈e+ ,µ〉
|µ| < s, then arguing as in Lemma 4.13we have g′+(γ+h ) > δ0− s

and so there is an M1 such that g′+([ f n(γ+h )])
|[ f n

+ (γ+h )]|
′

|[ f n
+ (γ+h )]|

> δ0 and so

ϕn[ηh] ∈ V̂′+ for all n ≥ M0 + M1.

Thus for the second case we assume that [ηh] ∈ V̂′+ and

〈e+ ,γ+h 〉
|γ+h |

≥ s.

If h is a power of a conjugate of g, then ϕ([ηh]) � [ηh] ∈ V̂′+. Therefore
we can assume that h is not a power of a conjugate of g and so

|[ f n
+ (γ+h )]|

′ ≥ 1 for all n ≥ 0.

Next we observe that given δ > 0 and R > 1, there is a constant

M2 > 1 such that for any reduced path α in G′+ which is not a

Nielsen path, either g′+([ f M2

+ (α)]) > δ or |α |′ > R |[ f M2

+ (α)]|′. This is

the analog of [27, Lemma 4.19]. The idea is that any long enough

reduced path can be subdivided into subpaths of length 10C, and we

can find an exponent M1 such that for any reduced edge path γ in

G′+ with |γ | < 10C, the path [ f M2

+ (γ)] is completely split. This tells

that either [ f M1

+ (γ)] has a definite completely split goodness, or the

length |[ f M1

+ (γ)]| decreases by a definite amount. Hence an argument

similar to the one in Lemma 4.11 tells that the following holds after

replacing M1 with a possibly larger constant:
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For all h ∈ FN not conjugate to g, we have either:

(1) g′+([ f M1

+ (γ+h )]) > δ0; or

(2) | f M1

+ (γ+h )|
′ <

1

R
|γ+h |

′

where
1

1+Rs < ε and
R

R+1/s > 1 − ε. Set M � M0 + M1.

First assume that (1) holds for h. Set t � 〈e+, [ f M
+ (γ+h )]〉/|[ f

M
+ (γ+h )]|.

As h is not a power of a conjugate of g we have that 0 ≤ t < 1.

As g′−([ f M1− (γ−h )]) > δ0, there is a current [µ] ∈ ∆+ satisfying the

inequality in Proposition 4.10(2) for f M
+ (γ+h ). We normalize µ so that

|µ| � 1. With our normalization, we have that |tηg + (1 − t)µ| � 1 as

well. We claim that ϕM[ηh] ∈ NG+
([tηg + (1 − t)µ], P̂+(L), ε) � V̂′+.

For apath α ∈ P+(L)wehave 〈α, ηg〉 � 0, |[ f M
+ (γ+h )]|

′ � |[ f M
+ (γ+h )]|(1−

t) and so:���� 〈α, [ f M
+ (γ+h )]〉

|[ f M
+ (γ+h )]|

− 〈α, tηg+ (1 − t)µ〉
����

�

����� 〈α, [ f M
+ (γ+h )]〉(1 − t)

|[ f M
+ (γ+h )]|(1 − t)

− (1 − t)〈α, µ〉
�����

�

����� 〈α, [ f M
+ (γ+h )]〉

|[ f M
+ (γ+h )]|′

− 〈α, µ〉
����� (1 − t)

< ε(1 − t) ≤ ε.

Also as 〈e+, µ〉 � 0 and 〈e+, ηg〉 � 1 we find:����� 〈e+, [ f M
+ (γ+h )]〉

|[ f M
+ (γ+h )]|

− 〈e+, tηg + (1 − t)µ〉
����� � ��t − t〈e+, ηg〉

��
� |t − t | � 0.

This shows ϕM[ηh] ∈ NG+
([tηg + (1 − t)µ], P̂+(L), ε) as claimed.

On theotherhand if (1) fails then (2) holds for γ+h andso |[ f M
+ (γ+h )]|

′ ≤
1

R |γ+h |
′
. We claim that ϕM[ηh] ∈ NG+

([ηg], P̂+(L), ε). Notice that we

have 〈e+, [ f M
+ (γ+h )]〉 � 〈e+, γ

+

h 〉 and
〈e+ ,γ+h 〉
|γ+h |′

≥ 〈e+ ,γ
+

h 〉
|γ+h |

≥ s.
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For a path α ∈ P+(L)we have 〈α, [ f M
+ (γ+h )]〉 ≤ |[ f

M
+ (γ+h )]|

′
and so:

0 <
〈α, [ f M

+ (γ+h )]〉
|[ f M

+ (γ+h )]|
≤

|[ f M
+ (γ+h )]|

′

|[ f M
+ (γ+h )]|′ + 〈e+, [ f

M
+ (γ+h )]〉

�
1

1 +
〈e+ ,γ+h 〉
|[ f M

+ (γ+h )]|′

≤ 1

1 +
R〈e+ ,γ+h 〉
|γ+h |′

≤ 1

1 + Rs
< ε.

Therefore as 〈α, ηg〉 � 0 we have:����� 〈α, [ f M
+ (γ+h )]〉

|[ f M
+ (γ+h )]|

− 〈α, ηg〉
����� < ε.

Additionally, we have:

1 >
〈e+, [ f M

+ (γ+h )]〉
|[ f M

+ (γ+h )]|
�
〈e+, γ+h 〉
|[ f M

+ (γ+h )]|
�

〈e+, γ+h 〉
|[ f M

+ (γ+h )]|′ + 〈e+, γ
+

h 〉

≥
〈e+, γ+h 〉

1

R |γ+h |′ + 〈e+, γ
+

h 〉
�

R〈e+, γ+h 〉
|γ+h |′ + R〈e+, γ+h 〉

�
R

R +
|γ+h |′
〈e+ ,γ+h 〉

≥ R
R + 1/s > 1 − ε.

Therefore as 〈e+, ηg〉 � 1 we have:����� 〈e+, [ f M
+ (γ+h )]〉

|[ f M
+ (γ+h )]|

− 〈e+, ηg〉
����� < ε.

This shows ϕM[ηh] ∈ NG+
([ηg], P̂+(L), ε) as claimed. �

4.5. Generalized north-south dynamics for almost atoroidal ele-
ments. Using the material from the previous two sections, we can

now prove the main technical result needed for Theorem A.

Theorem 4.15. Suppose A < FN is a co-rank 1 free factor and ϕ ∈
IAN(Z/3) ∩ Out(FN ; A) is such that ϕ

��
A is atoroidal. Let ∆+ and ∆−

be the inclusion to PCurr(FN) of the ϕ–invariant simplices in PCurr(A)
from Theorem 4.2 for ϕ

��
A. Assume ϕ is not atoroidal and let [g] be the

fixed conjugacy class in FN given by Proposition 4.1(2). Then ϕ acts on
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PCurr(FN) with generalized north-south dynamics. Specifically, for the
two invariant sets

∆̂− � {[tηg + (1 − t)µ−] | [µ−] ∈ ∆−, t ∈ [0, 1]}
and

∆̂+ � {[tηg + (1 − t)µ+] | [µ+] ∈ ∆+, t ∈ [0, 1]},
given any open neighborhood U± of ∆± in PCurr(FN) and open neighbor-
hood V̂± of ∆̂± inPCurr(FN), there is anM > 0 such thatϕ±n(PCurr(FN)−
V̂∓) ⊂ U± for all n ≥ M.

See Figure 1 for a schematic of the sets mentioned in Theorem 4.15.

∆+ ⊂ U+

∆̂+ ⊂ V̂+

∆− ⊂ U−

∆̂− ⊂ V̂−

[ηg]

PCurr(A)

Figure 1. The set-up of neighborhoods in Theo-

rem 4.15. For n ≥ M, the element ϕn
sends the com-

plement of V̂− into U+; the element ϕ−n
sends the com-

plement of V̂+ into U−.

Proof. We replace ϕ by a power so that the results from Section 4.4

apply. This is addressed at the end of the proof.

By Lemmas 4.13 and 4.14 we can assume that ϕ(U+) ⊆ U+ and

V̂− ⊆ ϕ(V̂−). Let M be the exponent given by Proposition 4.12 by

using U+ � U+ and U− � W � V̂−.
For any current

[µ] ∈ ϕM(PCurr(FN)− V̂−) � PCurr(FN)−ϕM(V̂−) ⊆ PCurr(FN)−W
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we have ϕM[µ] ∈ U+ by Proposition 4.12, as ϕ−M[µ] < V̂−. Therefore
for any current [µ] ∈ PCurr(FN) − V̂−, we have ϕ2M[µ] ∈ U+ and

hence ϕ2n[µ] ∈ U+ for all n ≥ M as ϕ(U+) ⊆ U+. Therefore,

ϕ2n(PCurr(FN) − V̂−) ⊂ U+

for all n ≥ M. A symmetric argument for ϕ−1
shows that ϕ2

actswith

generalized north-south dynamics. We then invoke [27, Proposition

3.4] to deduce that ϕ (and also the original outer automorphism as

well) acts with generalized north-south dynamics. �

We conclude this section with the analog to Lemma 4.3 regarding

the behavior of length under iteration of ϕ that is needed for Theo-

rem 5.2. In this statement and its proof, we assume ϕ ∈ Out(FN) sat-
isfies the hypotheses of Theorem 4.15 and ∆±, ∆̂± are the ϕ–invariant
simplices in PCurr(FN) appearing in the statement of that theorem.

Lemma 4.16. For each C > 0 and neighborhood V̂ ⊂ PCurr(FN) of ∆̂−
there is a constant M > 0 such that if [µ] < V̂ , then |ϕnµ| ≥ C |µ| for all
n ≥ M.

Proof. There is a constant P such that for each current [ν] ∈ ∆(0)+ there

is a real number λν > 1 such that ϕPν � λνν [27, Remark 6.5]. Let

λ0 � min{λν | [ν] ∈ ∆(0)+ } and B0 be large enough so that λB0

0
≥ 3.

Hence |ϕPB0ν | ≥ 3|ν | for any [ν] ∈ ∆(0)+ . Since the weight function is

linear, for any [µ] ∈ ∆+ we have |ϕPB0µ| ≥ 3|µ| too.
Hence there is a neighborhood U ⊆ PCurr(FN) of ∆+ such that

|ϕPB0µ| ≥ 2|µ| for all [µ] ∈ U. By replacing U with a smaller neigh-

borhood, we may assume ϕ(U) ⊆ U and U ∩∆− � ∅ by Lemma 4.13.

Hence |ϕaPB0µ| ≥ 2
a |µ| for [µ] ∈ U. Let K � inf{|ϕiµ|/|µ| | [µ] ∈

U, 0 ≤ i < PB0}.
Let M0 be the constant from Theorem 4.15 applied to the neighbor-

hoods U and V̂ . There is a constant L > 0 such that |ϕM0µ| ≥ L |µ|
for all [µ] ∈ PCurr(FN).

Let B1 be large enough so that 2
B1 KL ≥ C and set M � PB0B1+M0.

If n ≥ M, we can write n � aPB0 + i + M0 where a ≥ B1 and

0 ≤ i < PB0. Then for [µ] < V , we have [ϕM0µ], [ϕi+M0µ] ∈ U and so

|ϕnµ| ≥ 2
a |ϕi+M0µ| ≥ 2

aK |ϕM0µ| ≥ 2
aKL |µ| ≥ C |µ|. �

5. Pushing past single-edge extensions

In this section we apply Theorem 4.15 to deal with the case of

pushing past single-edge extensions. Here we use the action on
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the space of currents to demonstrate that an element is atoroidal.

Given a single-edge extension F0 @ F1 invariant under H and ϕ ∈
H such that ϕ

��
F0

is atoroidal, if there is some nontrivial g ∈ FN

whose conjugacy class is ϕ–periodic, wewill either find a finite index

subgroup ofHthat fixes [g], or an element ψ ∈ Hso that we can play

ping-pong with ϕ, ψϕψ−1
to produce an element which is atoroidal

on F1.

To begin, we need a lemma that sets up the appropriate conditions

for playing ping-pong.

Lemma 5.1. SupposeF0 @ F1 is a handle extension that is invariant under
H < IAN(Z/3) and ϕ ∈ H is such that ϕ

��
F0

is atoroidal. Assume ϕ
��
F1

is
not atoroidal and let [A] ∈ F0 and g ∈ FN be as given by Proposition 4.1(2)
and denote F � A∗ 〈g〉. Let∆+(A) and∆−(A) be the inclusion toPCurr(F)
of the invariant simplices in PCurr(A) from Theorem 4.2 for ϕ

��
A and for

each other [B] ∈ F0, let ∆+(B) and ∆−(B) be the invariant simplices in
PCurr(B) from Theorem 4.2 for ϕ

��
B. Either:

(1) there is a finite index subgroup H′ of H such that H′[g] � [g]; or
(2) there is a ψ ∈ H such that ψ[g] , [g] and ∆+(B) ∩ ψ

��
B∆−(B) �

∆−(B) ∩ ψ
��
B∆+(B) � ∅ for all [B] ∈ F0 (including [A]).

Proof. Consider the orbit of the conjugacy class [g] under H. If the

orbit is finite, then there is a finite index subgroup H′ of H that fixes

[g] and so (1) holds.

Else, there is an infinite set X ⊆ H such that h1[g] , h2[g] for all
distinct h1, h2 ∈ X. We claim that there is a pair h1, h2 ∈ X such

that ψ � h−1

2
h1 satisfies the conclusion (2). By construction of X, we

have h−1

2
h1[g] , [g] for all distinct h1, h2 ∈ X and so we only need

to concern ourselves with the intersection of the simplices. To ease

notation here, we will implicitly be using the appropriate restrictions

of the elements in X.

To this end, we first consider the vertices ∆±(B)(0) for each [B] ∈
F1, i.e., the extremal measures in ∆±(B). For each such extremal

measure [µ], the support supp([µ]) contains a sublamination that is

uniquely ergodic. Indeed, any suchmeasure comes fromanaperiodic

EG stratum Hr in the CT that represents ϕ [33, Remark 3.4 and

Definition 3.5]. The restriction of ϕ to each ϕ–invariant minimal free

factor B0 contained in π1(Gr) is both fully irreducible and atoroidal.

The support supp(µ0) of the corresponding attracting current [µ0] is
contained in the support of [µ], and supp(µ) is uniquely ergodic [31,

Proposition 4.4].
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The fact that supp(µ0) ⊂ supp(µ) follows from the following facts.

Recall that for any ν ∈ Curr(FN), supp(ν) consists of all bi-infinite

paths β such that for any finite subpath γ of β 〈γ, ν〉 > 0 [25, Lemma

3.7]. Note that bydefinition thebi-infinitepath β obtainedby iterating

an edge e in an EG stratum is in the support of the corresponding

current. Further, for e ∈ Hr , the attracting lamination corresponding

to Hr is the closure of β [4, Lemma 3.1.10 and Lemma 3.1.15]. The

attracting lamination corresponding to a minimal stratum on which

Hr maps over is precisely the support of µ0, hence

supp(µ0) � Λ(B0, ϕ) ⊂ Λ(π1(Gr), ϕ).
Moreover, there are only finitely many such sublaminations. We

set Eϕ to be the set of projective classes of currents obtained by re-

stricting an extremal measure in some ∆±(B)(0) to a uniquely ergodic

sublamination contained in its support.

Since the set Eϕ is finite, we can replace X with an infinite subset

(which we will still denote X) such that for each s ∈ Eϕ either h1s �

h2s for all h1, h2 ∈ X or h1s , h2s for all distinct h1, h2 ∈ X. Let

E1 ⊆ Eϕ be the subset for the first alternative occurs andE∞ � Eϕ−E1.

Next fix an arbitrary h1 ∈ X and for each s ∈ E∞ let

Xs � {h ∈ X | h1s � hs′ for some s′ ∈ E∞}.
Notice that each Xs is finite set. Take h2 ∈ X −⋃

s∈E∞ Xs . Then for

any s ∈ E∞ we have h1s , h2s′ for any s′ ∈ E∞. If h1s � h2s′ for some

s′ ∈ E1, then s � h−1

1
h2s′ � s′, contradicting the fact that s ∈ E∞.

Therefore h−1

2
h1s < Eϕ for all s ∈ E∞ and h−1

2
h1s � s for all s ∈ E1.

Set ψ � h−1

2
h1. We have that for any s ∈ Eϕ, either ψs � s or

ψs < Eϕ.
Now take [µ] ∈ ∆−(B) for some [B] ∈ F1 and suppose that ψ[µ] ∈
∆+(B). Therefore we can write µ �

∑m
i�1

aiµ−i for some extremal

measures [µi] ∈ ∆−(B)(0) and coefficients ai > 0. Hence we have:

m∑
i�1

aiψµ
−
i � ψµ �

n∑
j�1

b jµ
+

j

for some extremal measures [µ+j ] ∈ ∆+(B)
(0)

and coefficients b j > 0.

In particular the union of the supports of supp(ψµ−i ) for i � 1, . . . ,m
equals the union of the supports supp(µ+j ) for j � 1, . . . , n. Let Λ ⊆
supp(µ−

1
) be a uniquely ergodic sublamination. As uniquely ergodic

laminations areminimal, ψΛ is a sublamination of supp(µ+j ) for some
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j. Thus ψ[µ−
1

��
Λ
] � [µ+j

��
Λ
]. This is a contradiction as [µ−

1

��
Λ
], [µ+j

��
Λ
] ∈

Eϕ are distinct. �

We can now play ping-pong to construct atoroidal elements.

Proposition 5.2. Suppose F0 @ F1 is a single-edge extension that is in-
variant under H < IAN(Z/3) and ϕ ∈ H is such that ϕ

��
F0

is atoroidal.
Assume ϕ

��
F1

is not atoroidal and let [g] be the fixed conjugacy class in FN

given by Proposition 4.1(2). Either:
(1) there is a finite index subgroup H′ of H such that H′[g] � [g]; or
(2) there is a ψ ∈ H and a constant M > 0 such that (θmϕn)

��
F1

is
atoroidal for any m , n ≥ M where θ � ψϕψ−1.

Proof. Assume (1) does not hold. Let ψ ∈ Hbe the element given by

Lemma 5.1 and set θ � ψϕψ−1
. Also, let [A] ∈ F0 be the free factor

given by Proposition 4.1 and denote F � A ∗ 〈g〉. Notice that θ
��
B is

atoroidal for all [B] ∈ F0 and [g′] � ψ[g] , [g] is the only conjugacy

class in F1 fixed by θ up to taking powers and inversion. We will

show that for sufficiently large m and n and any [B] ∈ F1 the element

(θmϕn)
��
B does not have any non-zero fixed points in Curr(B).

For each [B] ∈ F0, let ∆±(B) be the invariant simplices as defined

in Lemma 5.1. By this lemma we have that ∆+(B) ∩ ψ
��
B∆−(B) �

∆−(B)∩ψ
��
B∆+(B) � ∅ for any [B] ∈ F0. To begin, we will assume that

F0 � {[A]}, F1 � {[F]} and to simplify notation, we will implicitly

use the restrictions of the elements to F.
There are open sets U,V, Û , V̂ ⊂ PCurr(F) such that:

(1) ∆+ ⊂ U, ∆̂+ ⊂ Û, ∆− ⊂ V and ∆̂− ⊂ V̂ ;

(2) U ⊆ Û, V ⊆ V̂ ; and

(3) Û ∩ ψV̂ � ∅ and ψÛ ∩ V̂ � ∅.
See Figure 2.

Let M0 be the constant from Theorem 4.15 applied to ϕwith U and

V̂ . Let M1(ϕ), M1(θ) respectively, be the constants from Lemma 4.16

applied to ϕ with V̂ , θ with ψV̂ respectively with C � 2. Likewise,

let M1(ϕ−1), M1(θ−1) respectively, be the constants from Lemma 4.16

applied to ϕ−1
and Û, θ−1

and ψÛ respectively with C � 2.

Set M � max{M0,M1(ϕ),M1(θ),M1(ϕ−1),M1(θ−1)} and suppose

m , n ≥ M. Let µ ∈ Curr(F) be non-zero.
If [µ] < V̂ , then ϕn[µ] ∈ U (Theorem 4.15) and |ϕnµ| ≥ 2|µ|

(Lemma 4.16). Further ϕn[µ] < ψV̂ and so |θmϕnµ| ≥ 2|ϕnµ| ≥ 4|µ|
(Lemma 4.16 again). Hence θmϕnµ , µ.
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∆+

ψ∆+

∆−

ψ∆−

U ⊂ Û

ψU ⊂ ψÛ

V ⊂ V̂

ψV ⊂ ψV̂

[ηg]

ψ[ηg]

Figure 2. The set-up of neighborhoods in PCurr(F) for
Proposition 5.2.

Else [µ] ∈ V̂ and so [µ] < ψÛ. Hence θ−m[µ] ∈ ψV (Theo-

rem 4.15) and |θ−mµ| ≥ 2|µ| (Lemma 4.16). Further θ−m[µ] < Û
and so |ϕ−nθ−mµ| ≥ 2|θ−mµ| ≥ 4|µ| (Lemma 4.16 again). Hence

θmϕnµ , µ.
Therefore (θmϕn)

��
F is atoroidal.

The general case is a straight forward modification, additionally

playing ping-pong simultaneously in each Curr(B) for [B] ∈ F0 −
{[A]} using Theorem 4.2 in place of Theorem 4.15 and Lemma 4.3 in

place of Lemma 4.16. �

Putting together the previous results, we get the following propo-

sition which allows us to push past single-edge extensions. Care

needs to be taken to avoid distributing the action on other extensions

which adds a layer of technicality.

Proposition 5.3. Suppose H< IAN(Z/3). Let

∅ � F0 @ F1 @ · · · @ Fk � {[FN]}

be an H–invariant filtration by free factor systems and suppose Fi−1 @ Fi
is a single-edge extension. Suppose there exists some ϕ ∈ H such that:

(a) the restriction of ϕ to Fi−1 is atoroidal; and
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(b) ϕ is irreducible and non-geometric with respect to each multi-edge
extension Fj−1 @ Fj , j � 1, . . . , k.

Then either:
(1) there is a finite index subgroup H′ of H and a nontrivial element

g ∈ FN such that H′[g] � [g]; or
(2) there exists an element ϕ̂ ∈ H such that:

i. the restriction of ϕ̂ to Fi is atoroidal; and
ii. ϕ̂ is irreducible and non-geometric with respect to each multi-

edge extension Fj−1 @ Fj , j � 1, . . . , k.
Proof. As mentioned in Section 1.2, there are three types of single-

edge extensions. We deal with these separately.

If Fi−1 @ Fi is a circle extension, then Fi � Fi−1 ∪ {[〈g〉]} for some

nontrivial element g ∈ FN . As both Fi−1 and Fi are H–invariant, we

have H[g] � [g] and so (1) holds.

If Fi−1 @ Fi is a barbell extension then by Proposition 4.1, ϕ
��
Fi

is

atoroidal. Hence we may take ϕ̂ � ϕ to satisfy (2).

Lastly, we assume that Fi−1 @ Fi is a handle extension. If ϕ
��
Fi

is

atoroidal, then ϕ̂ � ϕ satisfies (2). Else, by Proposition 5.2, either

there is a finite index subgroup H′ of H such that H′[g] � [g] or
there is an element ψ ∈ H and constant M such that (θmϕn)

��
F1

is

atoroidal for m , n ≥ M where θ � ψϕψ−1
.

If the finite index subgroup H′ exists, then clearly (1) holds and

hence, we assume the existence of the element ψ ∈ H and constant

M with the properties above. Let S � { j | Fj−1 @ Fj is multi-edge}.
What remains to show is that for some m , n ≥ M the element θmϕn

is

irreducible and non-geometric with respect to Fj−1 @ Fj for all j ∈ S.
Suppose j ∈ S. As in [9, Theorem 6.6], there is a single com-

ponent [B j] ∈ Fj that is not a component of Fj−1 and subgroups

A j,1, . . . ,A j,k < B j where {[A j,1], . . . , [A j,k]} ⊆ Fj−1 such that for

Aj , the free factor system in B j determined by A j,1, . . . ,A j,k , the re-

striction ϕ
��
B j
∈ Out(B j ; Aj) is irreducible and non-geometric. Let

X j � ZF(B j ; Aj) be the δ–hyperbolic graph given by Theorem 3.2.

Notice that by (b), the element ϕ and its conjugate θ act as hyperbolic

isometries on X j . The remainder of the argument is an easy exercise

using δ–hyperbolic geometry, we sketch the details.

Recall that two hyperbolic isometries of a δ–hyperbolic space X
are said to be independent if their fixed point sets in ∂X are disjoint

and dependent otherwise. Let I ⊆ S be the subset of indices where ϕ
and θ are independent and D � S − I. By [9, Proposition 4.2] and

[9, Theorem 3.1], there are constants m , n0 ≥ M such that θmϕn
acts
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hyperbolically on X j if j ∈ I and n ≥ n0. Then, by [9, Proposition 3.4],

there is an n ≥ n0 such that θmϕn
acts hyperbolically on X j if j ∈ D.

By Theorem 3.2, the element θmϕn
is irreducible and non-geometric

with respect to each Fj−1 @ Fj when j ∈ S. This shows that (2)

holds. �

6. Proof of the subgroup alternative

In this section, we complete the proof of the main result of this

article.

Theorem A. Let H be a subgroup of Out(FN) where N ≥ 3. Either H

contains an atoroidal element or there exists a finite index subgroup H′ of
H and a nontrivial element g ∈ FN such that H′[g] � [g].
Proof. Without loss of generality, wemay assume thatH< IAN(Z/3).
Let ∅ � F0 @ F1 @ · · · @ Fm � {[FN]} be a maximal H–invariant fil-

tration by free factor systems. By the Handel–Mosher Subgroup

Decomposition, for each Fi−1 @ Fi which is a multi-edge extension,

H contains an element which is irreducible with respect to this ex-

tension [18, Theorem D].

Suppose that there is no finite index subgroup H′ of H and non-

trivial g ∈ FN such that H′[g] � [g]. In particular, every multi-edge

extension Fi−1 @ Fi is non-geometric by Theorem 3.1. Therefore, by

Corollary 3.4 there is a ϕ ∈ H that is irreducible and non-geometric

with respect to each multi-edge extension Fj−1 @ Fj for j � 1, . . . ,m.

We claim that for each i � 1, . . . ,m there is an ϕi ∈ H whose

restriction to Fi is atoroidal and is irreducible and non-geometric

with respect to each multi-edge extension Fj−1 @ Fj for j � 1, . . . ,m.

Indeed, by our assumptions, ∅ � F0 @ F1 must be a multi-edge

extension and so we can take ϕ1 � ϕ.
Now assume that ϕi−1 exists. If Fi−1 @ Fi is a single-edge exten-

sion, we apply Proposition 5.3 to ϕ � ϕi−1 and set ϕi � ϕ̂. Else,

Fi−1 @ Fi is a multi-edge extension and we apply Lemma 3.3 to ϕi−1

and the extension Fi−1 @ Fi to conclude that we may set ϕi � ϕi−1 in

this case.

Thus the elementsϕi as claimed exist. By construction, the element

ϕm ∈ H is atoroidal. �
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